⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 adj.tex

📁 国外免费地震资料处理软件包
💻 TEX
字号:
\section{LEAST-SQUARES INVERSION AND ADJOINT OPERATORS}%%%%%%%%%%%%%%%%%%%%%Least-squares inversion is widely used in practice not only because it  is applicable even when the asymptotic results are unavailable but also  because of its ability to handle finite sampling effects that are   difficult to handle in asymptotic theory \cite[]{GEO65-05-13641371}.The theoretical least-squares inverse of operator (\ref{eqn:operator}) has thewell-known form \cite[]{tarantola}\begin{equation}\widetilde{M}(z,x)={\bf \widetilde{A}}[S(t,y)]={\bf \left(A^{T}\,A\right)^{\dagger}\,A^{T}}[S(t,y)]\;,\label{eqn:LS}\end{equation} where $\dagger$ denotes pseudo-inverse, and the adjoint operator ${\bf A^{T}}$ is defined by the dot-producttest:\begin{equation}\left(S(t,y),{\bf A}[M(z,x)]\right) \equiv \left({\bf A^{T}}[S(t,y)],M(z,x)\right)\;.\label{eqn:dottest}\end{equation}With a specified definition of the dot-product, the generalizedinverse minimizes the following quantity, which is the squared $L_2$norm of the residual:\begin{equation}\left(S(t,y)-{\bf A}[M(z,x)],S(t,y)-{\bf A}[M(z,x)]\right)\;.\end{equation}In the case of integral operators, a natural definition of the dot-productis the double integral\begin{equation}\left(S_1(t,y),S_2(t,y)\right)  = \iint\,S_1(t,y)\,S_2(t,y)\,dy\,dt\;,\end{equation}\begin{equation}\left(M_1(z,x),M_2(z,x)\right)  = \iint\,M_1(z,x)\,M_2(z,x)\,dx\,dz\;.\end{equation}\parThe notion of the adjoint operator completely depends on thearbitrarily chosen definition of the dot product and norm in the modeland data spaces. A simple way to change those definitions is to findsome positive weights $W_M(z,x)$ in the model space and $W_S(t,y)$ inthe data space that define the dot products as follows:\begin{eqnarray}\left(S_1(t,y),S_2(t,y)\right) & = &\iint\,W_S(t,y)\,S_1(t,y)\,S_2(t,y)\,dy\,dt\;,\label{eqn:wsproduct} \\\left(M_1(z,x),M_2(z,x)\right) & = &\iint\,W_M(z,x)\,M_1(z,x)\,M_2(z,x)\,dx\,dz\;.\label{eqn:wmproduct}\end{eqnarray}\parTo formally define the adjoint of a stacking operator, let us substitute the definition of the stackingoperator (\ref{eqn:operator}) into the dot product(\ref{eqn:dottest}), as follows:\begin{equation}\left(S(t,y),{\bf A}[M(z,x)]\right) =\int\iint\,w(x;t,y)\,M(\theta(x;t,y),x)\,S(t,y)\,dx\,dy\,dt\;.\label{eqn:dot1}\end{equation}Assuming that the function $\theta$ is monotone in $t$\footnote{If this is not  the case, a different parameterization of the stacking function is  appropriate \cite[]{antial}}, we can change the integration variable $t$ to$z=\theta(x;t,y)$ and rewrite equation~(\ref{eqn:dot1}) in the form\begin{equation}\left(S(t,y),{\bf A}[M(z,x)]\right) =\int\iint\,\widetilde{w}(y;z,x)\,M(z,x)\,S(\widehat{\theta}(y;z,x),x)\,dy\,dx\,dz\;,\label{eqn:dot2}\end{equation}where $\widehat{\theta}$ has the same meaning as in equation(\ref{eqn:inverse}), and\begin{equation}\widetilde{w}(y;z,x) = w(x;\widehat{\theta}(y;z,x),y)\,\left|\partial \widehat{\theta} \over \partial z\right|\;.\label{eqn:tildew}\end{equation}Comparing equations~(\ref{eqn:dot2}) and (\ref{eqn:dottest}), we conclude that the adjointoperator ${\bf A^{T}}$ is defined by the equality\begin{equation}{\bf A^{T}}[S(t,y)]=\int \widetilde{w}(y;z,x)\,S(\widehat{\theta}(y;z,x),y)\;dy\;.\label{eqn:adjoint}\end{equation}Thus we have proven that the continuous adjoint of astacking operator is another stacking operator. The adjoint operatorhas the same summation path as the asymptotic inverse (\ref{eqn:inverse}),which guarantees the correct reconstruction of the kinematics of theinput wavefield. The amplitude (weighting function) of the adjointoperator is directly proportional to the forward weighting accordingto equation (\ref{eqn:tildew}). The coefficient of proportionality is theJacobian of the transformation of the variables $z$ and $t$.\parSimilar results have been obtained for particular cases of stackingoperators: velocity transform\cite[]{Thorson.sepphd.39,Jedlicka.sep.61.41}, Kirchhoffconstant-velocity migration \cite[]{Ji.sep.80.499}, and NMO\cite[]{Crawley.sep.89.207}.  In the appendix, I exemplify anapplication of least-squares inversion by reviewing inversion of theRadon operator and showing that it is precisely equivalent to theasymptotic result of the previous section.%%% Local Variables: %%% mode: latex%%% TeX-master: t%%% TeX-master: t%%% End: 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -