📄 exs.tex
字号:
simple asymptotic relationship\begin{equation}\left(\pm\,{d \over {d\,z}}\right)^{m/2} = \left(\pm\,{d \over {d\,t}}\right)^{m/2}\,\left({{dt} \over {dz}}\right)^{m/2} =\left(\pm\,{d \over {d\,t}}\right)^{m/2}\,\left({z\over t}\right)^{m/2}\;,\end{equation}which transforms the reversed velocity continuation operator to thefamiliar form (\ref{eqn:backward}) with the weighting function equal to(\ref{eqn:rmwp}). According to formula (\ref{eqn:zomww}), these two operators areseen to be asymptotically inverse. \parTo obtain the velocity continuation operator completely equivalent toresidual migration with the weighting function (\ref{eqn:zomw}), we candivide the continued wavefield by the time $t$, which is equivalent totransforming equation (\ref{eqn:VCequation}) to the form\begin{equation}{{\partial^2 P}\over{\partial v\,\partial t}} +v\,t\,{{\partial^2 P}\over{\partial x^2}} +{1 \over t}\,{\partial P \over {\partial v}} = 0\;.\label{eqn:VCequation1}\end{equation}The reverse continuation in this case has the weighting function(\ref{eqn:invzomw}). \parAnalogously, one can obtain the pseudo-unitary residual migration with the weightingfunctions (\ref{eqn:zomwp}) and (\ref{eqn:zomwm}) by dividing thewavefield by $\sqrt{t}$. This leads to the equation\begin{equation}{{\partial^2 P}\over{\partial v\,\partial t}} +v\,t\,{{\partial^2 P}\over{\partial x^2}} +{1 \over {2\,t}}\,{\partial P \over {\partial v}} = 0\;.\end{equation}\parIt is apparent that the operators of forward and reverse continuationwith equation (\ref{eqn:VCequation}) become adjoint to each other if thedefinition of the dot product is changed according to formulas(\ref{eqn:wsproduct}) and (\ref{eqn:wmproduct}) with the model weight $W_M(z)=z$and the data weight $W_S(t)=t$. Analogously, the solutions of equation(\ref{eqn:VCequation1}) are adjoint if $W_M(z)={1 \over z}$ and $W_S(t)={1\over t}$. This is a simple example of how the arbitrarily chosen definition ofthe dot product can affect the basic properties of theinverted operators.\end{comment}\subsection{Velocity Transform}%%%%%%%%%%%%%%%%%%%%%%%%%% \inputdir{velinv}Velocity transform is another form of hyperbolic stacking with thesummation path\begin{equation}\widehat{\theta}(h;t_0,s) = \sqrt{t_0^2 + s^2\,h^2}\;,\label{eqn:vtt}\end{equation}where $h$ corresponds to the offset, $s$ is the stacking slowness, and$t_0$ is the estimated zero-offset traveltime. Hyperbolic stacking isroutinely applied for scanning velocity analysis in common-midpointstacking. Velocity transform inversion has proved to be a powerfultool for data interpolation and amplitude-preserving multiplesuppression \cite[]{Thorson.sepphd.39,Ji.sepphd.90,SEG-1995-1460}.\parSolving equation (\ref{eqn:vtt}) for $t_0$, we find that the asymptoticinverse and adjoint operators have the elliptic summation path\begin{equation}\theta(s;t,h) = \sqrt{t^2 - s^2\,h^2}\;.\end{equation}The weighting functions of the asymptotic pseudo-unitary velocitytransform are found using formulas (\ref{eqn:wp}) and (\ref{eqn:wm})to have the form\begin{eqnarray} \label{eqn:vtpsun1}w^{(+)} & = & {1\over{\left(2\,\pi\right)^{1/2}}} \, \left|F\,\widehat{F}\right|^{1/4}\,\left|\partial \widehat{\theta} \over \partial t_0\right|^{- 1/4} ={1\over{\sqrt{\pi}}}\, {{\sqrt{s\,h}\,\sqrt{t/t_0}} \over {\sqrt{t}}}\;. \\ \label{eqn:vtpsun2}w^{(-)} & = & {1\over{\left(2\,\pi\right)^{1/2}}} \, \left|F\,\widehat{F}\right|^{1/4}\,\left|\partial \widehat{\theta} \over \partial t_0\right|^{3/4} ={1\over{\sqrt{\pi}}} \, {{\sqrt{s\,h}\,\sqrt{t_0/t}} \over {\sqrt{t}}}\;.\end{eqnarray}The factor $\sqrt{s\,h}$ for pseudo-unitary velocity transformweighting has been discovered empirically by \cite{Claerbout.bei.95}.Figure~\ref{fig:cgiter} shows the output of a numerical test of theleast-squares velocity transform inversion using a CMP gather from theMobil AVO dataset \cite[]{SEG-1995-1460}. The input CMP gather (shown inthe left plot of Figure~\ref{fig:dircvv}) is inverted using aniterative conjugate-gradient method and two different weightingscheme: the uniform weighting and the asymptotic pseudo-unitaryweights~(\ref{eqn:vtpsun1}-\ref{eqn:vtpsun2}). Analogously toFigure~\ref{fig:migiter}, the iterative convergence is measured by theleast-squares norm of the data residual error at different iterations.Figure~\ref{fig:cgiter} shows that the pseudo-unitary weightingprovides a noticeably faster convergence at the first threeiterations. At later iterations, the residual errors of the twomethods are very close to each other. The use of a pseudo-unitaryweighting will be justified in this case if only three iterations arepractically affordable. The results of inversion after 10conjugate-gradient iterations are plotted in Figures \ref{fig:dircvv}and \ref{fig:dirrst}. The right plot in Figure~\ref{fig:dircvv} showsthe output of the velocity transform inversion: an optimized velocityscan. Figure~\ref{fig:dirrst} shows the corresponding modeled CMPgather and the residual error. The error is negligible whichindicates a successful inversion.\sideplot{cgiter}{height=3in}{Comparison of convergence of the iterative velocity transform inversion. The dashed line corresponds to the unweighted (uniformly weighted) operator. The solid line corresponds to the asymptotic pseudo-unitary operator. The latter provides a faster convergence at early iterations.}\plot{dircvv}{width=6in,height=3in}{Input CMP gather (left) and its velocity transform counterpart (right) after 10 iterations of iterative least-squares inversion.}\plot{dirrst}{width=6in,height=3in}{The modeled CMP gather (left) and the residual error (right) plotted at the same scale.}\subsection{Offset Continuation and DMO}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Offset continuation is the operator that transforms seismic reflectiondata from one offset to another\cite[]{GPR30-06-08130828,GPR30-06-08290849}. If the data are continuedfrom half-offset $h_1$ to a larger offset $h_2$, the summation path ofthe post-NMO integral offset continuation has the following form\cite[]{Biondi.sep.80.125,stovas,Fomel.sepphd.107}:\begin{equation}\theta(x;t,y) = {t \over h_2}\,\sqrt{{U+V} \over 2}\;,\label{eqn:ttOC12}\end{equation}where $U = h_1^2 + h_2^2 - (x - y)^2$, $V = \sqrt{U^2 -4\,h_1^2\,h_2^2}$, and $x$ and $y$ are the midpoint coordinates before andafter the continuation. The summation path of the reverse continuationis found from inverting (\ref{eqn:ttOC12}) to be\begin{equation}\widehat{\theta}(y;z,x) = {z \,h_2}\,\sqrt{2 \over {U+V}} = {z \over h_1}\,\sqrt{{U-V} \over 2}\;.\label{eqn:ttOC21}\end{equation}The Jacobian of the time coordinate transformation in this case is simply\begin{equation}\left|\partial \widehat{\theta} \over \partial z\right| = {t \over z}\;.\label{eqn:OCj}\end{equation}Differentiating summation paths (\ref{eqn:ttOC12}) and (\ref{eqn:ttOC21}), wecan define the product of the weighting functions according to formula(\ref{eqn:whatw}), as follows:\begin{equation}w\,\widehat{w}={1\over{2\,\pi}} \, {\sqrt{\left|F\,\widehat{F}\right|\,\left|\partial \widehat{\theta} \over \partial z\right|}} ={t\over{2\,\pi}} \,{{\left(h_2^2-h_1^2\right)^2 - (x-y)^4} \over V^3}\;.\label{eqn:OCww}\end{equation}The weighting functions of the amplitude-preserving offsetcontinuation have the form \cite[]{Fomel.sepphd.107}\begin{eqnarray}w(x;t,y) & = & \sqrt{z \over {2\,\pi}}\;{{h_2^2-h_1^2-(x-y)^2} \over {V^{3/2}}}\;, \label{eqn:wOC12} \\\widehat{w}(y;z,x) & = & {{t/\sqrt{z}} \over \sqrt{2\,\pi}}\;{{h_2^2-h_1^2 + (x-y)^2} \over {V^{3/2}}}\;. \label{eqn:wOC21} \end{eqnarray}It easy to verify that they satisfy relationship (\ref{eqn:OCww});therefore, they appear to be asymptotically inverse to each other. \parThe weighting functions of the asymptotic pseudo-unitary offsetcontinuation are defined from formulas (\ref{eqn:wp}) and (\ref{eqn:wm}), as follows:\begin{eqnarray}w^{(+)} & = & {1\over{\left(2\,\pi\right)^{1/2}}} \; \left|F\,\widehat{F}\right|^{1/4}\,\left|\partial \widehat{\theta} \over \partial t_0\right|^{- 1/4} =\sqrt{z \over {2\,\pi}}\,{{\left(\left(h_2^2-h_1^2\right)^2 - (x-y)^4\right)^{1/2}} \over {V^{3/2}}}\;, \label{eqn:puwOC12} \\w^{(-)} & = & {1\over{\left(2\,\pi\right)^{1/2}}} \; \left|F\,\widehat{F}\right|^{1/4}\,\left|\partial \widehat{\theta} \over \partial t_0\right|^{3/4} ={{t/\sqrt{z}} \over \sqrt{2\,\pi}}\,{{\left(\left(h_2^2-h_1^2\right)^2 - (x-y)^4\right)^{1/2}} \over {V^{3/2}}}\;.\label{eqn:puwOC21} \end{eqnarray}\parThe most important case of offset continuation is the continuationto zero offset. This type of continuation is known as {\em dip moveout(DMO)}. Setting the initial offset $h_1$ equal to zero in the generaloffset continuation formulas, we deduce that the inverse and forwardDMO operators have the summation paths\begin{eqnarray}\theta(x;t,y) & = & {t \over h_2}\,\sqrt{h_2^2-(x-y)^2}\;,\label{eqn:ttDMO12} \\\widehat{\theta}(y;z,x) & = & {{z \,h_2} \over \sqrt{h_2^2-(x-y)^2}}\;. \label{eqn:ttDMO21}\end{eqnarray}The weighting functions of the amplitude-preserving inverse andforward DMO are\begin{eqnarray}w(x;t,y) & = & \sqrt{z \over {2\,\pi}}\;{1 \over h_2}\;,\label{eqn:wDMO12} \\\widehat{w}(y;z,x) & = & {{t/\sqrt{z}} \over \sqrt{2\,\pi}}\;{{h_2\,\left(h_2^2 + (x-y)^2\right)} \over{\left(h_2^2-(x-y)^2\right)^2}}\;,\label{eqn:wDMO21} \end{eqnarray}and the weighting functions of the asymptotic pseudo-unitary DMO are\begin{eqnarray}w^{(+)} & = & \sqrt{z \over {2\,\pi}}\;{\sqrt{h_2^2 + (x-y)^2} \over {h_2^2-(x-y)^2}}\;,\label{eqn:puDMO12} \\w^{(-)} & = & {{t/\sqrt{z}} \over \sqrt{2\,\pi}}\;{\sqrt{h_2^2 + (x-y)^2} \over {h_2^2-(x-y)^2}}\;.\label{eqn:puDMO21} \end{eqnarray}Equations similar to~(\ref{eqn:wDMO12}) and~(\ref{eqn:wDMO21}) havebeen published by \cite{stovas}. Equation~(\ref{eqn:wDMO21}) differsfrom the similar result of \cite{black} by a simple timemultiplication factor. This difference corresponds to the differencein definition of the amplitude preservation criterion.Equation~(\ref{eqn:wDMO21}) agrees asymptotically with thefrequency-domain Born DMO operators\cite[]{Born,GEO56-02-01820189,cwp}. Likewise, the stacking operatorwith the weighting function (\ref{eqn:wDMO12}) corresponds to Ronen'sinverse DMO \cite[]{GEO52-07-09730984}, as discussed by\cite{Fomel.sepphd.107}. Its adjoint, which has the weightingfunction\begin{equation}\widetilde{w}(x;t,y) = {{t/\sqrt{z}} \over {2\,\pi}}\;{1 \over h_2}\;,\label{eqn:hDMO21}\end{equation}corresponds to Hale's DMO \cite[]{GEO49-06-07410757}.%%% Local Variables: %%% mode: latex%%% TeX-master: t%%% TeX-master: t%%% End:
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -