⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 exs.tex

📁 国外免费地震资料处理软件包
💻 TEX
📖 第 1 页 / 共 3 页
字号:
constant-velocity case, we can differentiate the explicit expressionfor the summation path\begin{equation}\widehat{\theta}(y;z,x)  =  z + {{\rho_s(x,y) + \rho_r(x,y)} \over v}\;,\end{equation}where $\rho_s$ and$\rho_r$ are the lengths of the incident and reflected rays:\begin{eqnarray}\rho_s(y,x) & = & \sqrt{x_3^2 + (x_1 - y_1 + h_1)^2 + (x_2 - y_2 + h_2)^2}\;, \\\rho_r(y,x) & = & \sqrt{x_3^2 + (x_1 - y_1 - h_1)^ 2+ (x_2 - y_2 - h_2)^2}\;.\end{eqnarray}For simplicity, the vertical component of the midpoint $y_3$ is set here to zero. Evaluating the second derivative term in formula(\ref{eqn:migw}) for the common-offset geometry leads, after some heavyalgebra, to the expression \begin{equation}\left|{{\partial^2 T\left(s(y),x\right)} \over {\partial x\,\partial y}} +           {{\partial^2 T\left(x,r(y)\right)}\over {\partial x\,\partial y}}\right| = {{x_3\,(\rho_s^2 + \rho_r^2)} \over {v\,(\rho_s\,\rho_r)^2}}\,\left({{\rho_s + \rho_r} \over {v\,\rho_s\,\rho_r}}\right)^{m-1}\,\cos{\alpha(x)}\;.\label{eqn:cobeilk}\end{equation}Substituting (\ref{eqn:cobeilk}) into the general formula (\ref{eqn:migw}) yieldsthe weighting function for the common-offset true-amplitudeconstant-velocity migration:\begin{equation}\widehat{w}_{CO}(y;z,x)  =  {1\over{\left(2\,\pi\right)^{m/2}}} \,{{x_3\,(\rho_s + \rho_r)^{m-1}\,(\rho_s^2 + \rho_r^2)} \over {v\,(\rho_s\,\rho_r)^{m/2+1}}}\;.\label{eqn:comigw}\end{equation}Equation~(\ref{eqn:comigw}) is similar to the result obtained by\cite{GEO52-06-07450754}. In the case of zero offset $h=0$,it reduces to equation~(\ref{eqn:zomigw}). Note that the valueof $m=1$ in (\ref{eqn:comigw}) corresponds to the two-dimensional (cylindric)waves recorded on the seismic line. A special case is the 2.5-D inversion,when the waves are assumed to be spherical, while the recording is on a line,and the medium has cylindric symmetry. In this case, the modeling weightingfunction (\ref{eqn:modw}) transforms to\cite[]{GPR31-02-02930333,GPR34-05-06860703}\begin{equation}w(x;t,y)  =  {1\over{\left(2\,\pi\right)^{1/2}}} \,{\sqrt{v}\,{C\left(s(y),x,r(y)\right)} \over {\sqrt{\rho_s\,\rho_r\,(\rho_s + \rho_r)}}}\;,\end{equation}and the time filter is $\left({\partial \over {\partialz}}\right)^{1/2}$. Combining this result with formula (\ref{eqn:cobeilk})for $m=1$, we obtain the weighting function for the 2.5-Dcommon-offset migration in a constant velocity medium\cite[]{GEO52-06-07450754}:\begin{equation}\widehat{w}_{CO;2.5D}(y;z,x)  =  {1\over{\left(2\,\pi\right)^{1/2}}} \,{{x_3\,\sqrt{\rho_s + \rho_r}\,(\rho_s^2 + \rho_r^2)} \over {\sqrt{v}\,(\rho_s\,\rho_r)^{3/2}}}\;.\end{equation}The corresponding time filter for 2.5-D migration is $\left(-{\partial \over {\partial t}}\right)^{1/2}$.\parIn thecommon-offset case, the pseudo-unitary weighting is defined from(\ref{eqn:pumigw}) and (\ref{eqn:cobeilk}) as follows:\begin{equation}w^{(-)}_{CO}(y;z,x)  =  {1\over{\left(2\,\pi\,v\right)^{m/2}}} \,{{\sqrt{x_3\,\cos{\alpha}}\,(\rho_s + \rho_r)^{{m-1} \over 2}\,\sqrt{\rho_s^2 + \rho_r^2}} \over {(\rho_s\,\rho_r)^{{m+1} \over 2}}}\;,\end{equation}where\begin{equation}\cos{\alpha} = \left({{(x - y)^2 + \rho_s\,\rho_r - h^2} \over {2\,\rho_s\,\rho_r}}\right)^{1/2}\;.\end{equation}\subsection{Post-Stack Time Migration}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\inputdir{miginv}An interesting example of a stacking operator is the hyperbola summationused for time migration in the post-stack domain. In this case, thesummation path is defined as\begin{equation}\widehat{\theta}(y;z,x)  =  \sqrt{z^2+{{(x-y)^2}\over {v^2}}}\;,\label{eqn:zomt}\end{equation}where $z$ denotes the vertical traveltime, $x$ and $y$ are thehorizontal coordinates on the migrated and unmigrated sectionsrespectively, and $v$ stands for the effectively constantroot-mean-square velocity \cite[]{Claerbout.bei.95}.  The summation pathfor the reverse transformation (demigration) is found from solvingequation (\ref{eqn:zomt}) for $z$. It has the well-known elliptic form\begin{equation}\theta(x;t,y)  =  \sqrt{t^2-{{(x-y)^2}\over {v^2}}}\;.\end{equation}The Jacobian of transforming $z$ to $t$ is\begin{equation}\left|\partial \widehat{\theta} \over \partial z\right| = {z \over t}\;.\label{eqn:zomj}\end{equation}If the migration weighting function is defined by conventionaldownward continuation \cite[]{GEO43-01-00490076}, it takes the following form,which is equivalent to equation (\ref{eqn:datw2}):\begin{equation}\widehat{w}(y;z,x)  =  {1\over{\left(2\,\pi\right)^{m/2}}} \,{{\cos{\alpha(y)}}\over {v\,R(y,x)}} = {1\over{\left(2\,\pi\right)^{m/2}}} \,{\cos{\alpha} \over {v^m\,t^{m/2}}}\;.\label{eqn:zomw}\end{equation}The simple trigonometry of the reflected ray suggests that the cosinefactor in formula (\ref{eqn:zomw}) is equal to the simple ratio between thevertical traveltime $z$ and the zero-offset reflected traveltime $t$:\begin{equation}\cos{\alpha} =  {z \over t}\;.\label{eqn:cos}\end{equation}The equivalence of the Jacobian (\ref{eqn:zomj}) and the cosine factor(\ref{eqn:cos}) has important interpretations in the theory of Stoltfrequency-domain migration\cite[]{GEO43-01-00230048,GEO46-05-07170733,Levin.sep.48.147}.According to equation (\ref{eqn:tildew}), the weighting function of theadjoint operator is the ratio of (\ref{eqn:zomw}) and (\ref{eqn:zomj}):\begin{equation}\widetilde{w}(x;t,y) = {1\over{\left(2\,\pi\right)^{m/2}}} \,{1 \over {v^m\,t^{m/2}}}\;.\label{eqn:adjzomw}\end{equation}We can see that the cosine factor $z/t$ disappears from the adjointweighting. This is completely analogous to the known effect of``dropping the Jacobian'' in Stolt migration\cite[]{Harlan.sep.35.181,Levin.sep.80.513}.  The product of theweighting functions for the time migration and its asymptotic inverseis defined according to formula (\ref{eqn:whatw}) as\begin{equation}w\,\widehat{w}={1\over{\left(2\,\pi\right)^m}} \, {\sqrt{\left|F\,\widehat{F}\right|\,\left|\partial \widehat{\theta} \over \partial z\right|^m}} ={1 \over {(v^2\,t)^m}}\;.\label{eqn:zomww}\end{equation}Thus, the asymptotic inverse of the conventional time migration hasthe weighting function determined from equations (\ref{eqn:whatw}) and(\ref{eqn:zomw}) as\begin{equation}w(x;t,y) = {1\over{\left(2\,\pi\right)^{m/2}}} \, {{t/z} \over{v^m\,t^{m/2}}}\;.\label{eqn:invzomw}\end{equation}The weighting functions of the asymptotic pseudo-unitary operators areobtained from formulas (\ref{eqn:wp}) and (\ref{eqn:wm}). They have the form \begin{eqnarray} w^{(+)}(x;t,y) & = &{1\over{\left(2\,\pi\right)^{m/2}}} \, {\sqrt{t/z} \over {v^m\,t^{m/2}}}\;.\label{eqn:zomwp} \\w^{(-)}(y;z,x) & = & {1\over{\left(2\,\pi\right)^{m/2}}} \, {\sqrt{z/t} \over {v^m\,t^{m/2}}}\;.\label{eqn:zomwm}\end{eqnarray}The square roots of the cosine factor appearing in formulas(\ref{eqn:zomwp}) and (\ref{eqn:zomwm}) correspond to the analogousterms in the pseudo-unitary Stolt migration proposed by\cite{Harlan.sep.48.127}.Figure~\ref{fig:migiter} shows the output of a simple numerical test.The synthetic zero-offset section used in this test is shown in theleft plot of Figure~\ref{fig:migcvv}. The data are taken from\cite{Claerbout.bei.95} and correspond to a synthetic reflectivitymodel, which contains several dipping layers, a fault, and anunconformity. The input zero-offset section is inverted using aniterative conjugate-gradient method and two different weightingschemes: the uniform weighting and the asymptotic pseudo-unitaryweighting~(\ref{eqn:zomwp}-\ref{eqn:zomwm}). I compare the iterativeconvergence by measuring the least-squares norm of the data residualerror at different iterations.  Figure~\ref{fig:migiter} shows thatthe pseudo-unitary weighting provides a significantly fasterconvergence.  The result of inversion after 10 conjugate-gradientiterations is shown in Figures \ref{fig:migcvv} and \ref{fig:migrst}.The right plot in Figure~\ref{fig:migcvv} shows the output of theleast-squares migration. Figure~\ref{fig:migrst} shows thecorresponding modeled data and the residual error. The latter is veryclose to zero. Although this example has only a pedagogical value, itclearly demonstrates possible advantages of using asymptoticpseudo-unitary operators in least-squares migration.\sideplot{migiter}{height=3in}{Comparison of convergence  of the iterative least-squares migration. The dashed line  corresponds to the unweighted (uniformly weighted) operator. The  solid line corresponds to the asymptotic pseudo-unitary operator.  The latter provides a noticeably faster convergence.}\plot{migcvv}{width=6in,height=3in}{Input zero-offset  section (left) and the corresponding least-squares image (right)  after 10 iterations of iterative inversion.}\plot{migrst}{width=6in,height=3in}{The modeled  zero-offset (left) and the residual error (right) plotted at the  same scale.}\begin{comment}\subsection{Post-Stack Residual Migration}%%%%%%%%%%%%%%%%%%%%%%%%%%In an earlier article \cite[]{vc}, I found the integral solution of the boundaryproblem for the velocity continuation partial differential equation\cite[]{Claerbout.sep.48.79}\begin{equation}{{\partial^2 P}\over{\partial v\,\partial z}} +v\,t\,{{\partial^2 P}\over{\partial x^2}} = 0\label{eqn:VCequation}\end{equation}with the boundary conditions $\left.P\right|_{v=v_0} = P_0$ and$\left.P\right|_{z \rightarrow \infty} = 0$. The solution has the formof the stacking operator (\ref{eqn:operator}), with the model $M$ replaced by$P_0$, the summation path\begin{equation}\widehat{\theta}(y;z,x)  =  \sqrt{z^2+{{(x-y)^2}\over {v^2-v_0^2}}}\;,\label{eqn:rmt}\end{equation}the weighting function \begin{equation}w_{(-)}(y;z,x) = {1\over{\left(2\,\pi\right)^{m/2}}} \,{1 \over {v^m\,t^{m/2}}}\;,\label{eqn:rmwp}\end{equation}which is coincident with (\ref{eqn:adjzomw}), and the correction filter$\left(\mbox{sign}(v_0-v)\,{d \over {d t}}\right)^{m/2}$. Comparing equations(\ref{eqn:rmt}) and (\ref{eqn:zomt}), we can see that this solution is equivalentkinematically to residual migration with the velocity$v_r=\sqrt{v^2-v_0^2}$ \cite[]{GEO50-01-01100126}. The reverse operatoris the solution of equation (\ref{eqn:VCequation}) with the boundarycondition on $v$ and has the reciprocal form of the summation path\begin{equation}\theta(x;t,y)  =  \sqrt{t^2+{{(x-y)^2}\over {v_0^2-v^2}}} = \sqrt{t^2-{{(x-y)^2}\over {v^2-v_0^2}}}\;,\end{equation}the weighting function\begin{equation}w_{(+)}(x;t,y) = {1\over{\left(2\,\pi\right)^{m/2}}} \,{1 \over {v^m\,z^{m/2}}}\;,\end{equation}and the correction filter $\left(\mbox{sign}(v-v_0)\,{d \over{d\,z}}\right)^{m/2}$. The derivative filters are connected by the

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -