📄 wti.tex
字号:
\section{WEAK ANISOTROPY APPROXIMATION for VTI media}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%In transversely isotropic media, velocities of seismic waves dependon the direction of propagation measured from the symmetryaxis. \cite{GEO51-10-19541966} introduced a notation for VTImedia by replacing the elastic stiffness coefficients%parameterization of this dependence, replacing the general notation of%elastic anisotropy in terms of stiffness coefficients%$C_{\alpha\beta}$ with the $P$- and $S$-wave velocities along the symmetryaxis and three dimensionless anisotropic parameters. As shown by Tsvankin\cite[]{tsvan1996}, the $P$-wave seismic signatures in %vertically transverse isotropic VTI media can be conveniently expressed in terms ofThomsen's parameters $\epsilon$ and $\delta$.%, and $\gamma$. Deviations of these parameters from zero characterize the relativestrength of anisotropy. For small values of these parameters,theweak-anisotropy approximation \cite[]{GEO51-10-19541966,tsvantom}reduces to simple linearization. \par The squared group velocity$V_g^2$ of $P$-waves in weakly anisotropic VTI media can be expressedas a function of the group angle $\psi$ measured from the verticalsymmetry axis as follows:\begin{equation} V_g^2(\psi) = V_z^2 \, \left(1 + 2 \, \delta \, \sin^2{\psi}\,\cos^2{\psi} + 2 \, \epsilon\,\sin^4{\psi} \right)\;,\label{eqn:vg}\end{equation}where $V_z = V_g(0)$ is the $P$-wave vertical velocity, and $\delta$ and$\epsilon$ are Thomsen's dimensionless anisotropic parameters, whichare assumed to be small quantities:\begin{equation} | \epsilon | \ll 1, \quad | \delta | \ll 1.\label{eqn:epsdel} \end{equation}Both parameters are equal to zero in isotropic media.%Their%connection with the stiffness coefficients has the following%expressions \cite{GEO51.10.19541966}:%\begin{eqnarray}%\delta & = & {{(C_{13} + C_{44})^2 - (C_{33} - C_{44})^2} \over%{2\,C_{33}\,(C_{33} - C_{44})}}\;,%\label{eqn:delta} \\%\epsilon & = & {{C_{11} - C_{33}} \over {2\,C_{33}}}\;.%\label{eqn:epsilon} %\end{eqnarray}\parEquation (\ref{eqn:vg}) is accurate up to the second-order terms in$\epsilon$ and $\delta$. We retain this level of accuracy throughoutthe paper. As follows from equation(\ref{eqn:vg}), the velocity $V_x$ corresponding to raypropagation in the horizontal direction is\begin{equation}V_x^2 = V_g^2(\pi/2) = V_z^2\,(1 + 2\,\epsilon)\;.\label{eqn:vx}\end{equation}Equation (\ref{eqn:vx}) is actually exact, validfor any strength of anisotropy. Another important quantity is thenormal-moveout (NMO) velocity, $V_n$, that determines the small-offset $P$-wave reflection moveout in homogeneous VTI media above ahorizontal reflector. Its exact expression is \cite[]{GEO51-10-19541966}\begin{equation}V_n^2 = V_z^2\,(1 + 2\,\delta)\;.\label{eqn:vn}\end{equation}If $\delta = 0$ as, for example, in the ANNIE model proposed by\cite{annie}, the normal-moveout velocity is equal to the vertical velocity.%\par%One example of a physical anisotropic model is ANNIE, proposed by%Schoenberg, Muir, and Sayers \shortcite{annie} to describe anisotropy%of shales. According to this model, the elasticity tensor (stiffness%matrix) in transversely isotropic shales is represented by the three%parameter approximation%\begin{equation}%C = \left[\begin{array}{cccccc}%\lambda + 2\,\mu_H & \lambda & \lambda & 0 & 0 & 0 \\%\lambda & \lambda + 2\,\mu_H & \lambda & 0 & 0 & 0 \\%\lambda & \lambda & \lambda + 2\,\mu & 0 & 0 & 0 \\%0 & 0 & 0 & \mu & 0 & 0 \\%0 & 0 & 0 & 0 & \mu & 0 \\%0 & 0 & 0 & 0 & 0 & \mu_H \end{array}\right]\;,%\label{eqn:sms}%\end{equation}%where $\lambda$, $\mu$, and $\mu_H$ are density-normalized elastic%parameters. Formula (\ref{eqn:delta}) shows that Thomsen's parameter%$\delta$ in this case is equal to zero, which corresponds to the known%fact that the normal-moveout velocity for shales is approximately%equal to the vertical velocity. The parameter $\epsilon$ in this case%is defined by the equation%\begin{equation}%\epsilon = {{\mu_H - \mu} \over {\lambda + 2\,\mu}}\;.%\label{eqn:smsepsilon}%\end{equation}\inputdir{Math}\parIt is convenient to rewrite equation (\ref{eqn:vg}) in the form \begin{equation}V_g^2(\psi) = V_z^2\,\left(1 + 2\,\delta\,\sin^2{\psi} + 2\,\eta\,\sin^4{\psi}\right)\;,\label{eqn:vgeta}\end{equation}where \begin{equation} \eta = \epsilon - \delta \;.\label{eqn:eta}\end{equation}Equation~(\ref{eqn:eta}) is the weak-anisotropy approximation for the%The parameter $\eta$ is equivalent under the weak anisotropy assumption%to the {\em anellipticity}$\,$ coefficient $\eta$ introduced by\cite{aktsvan}. For the elliptic anisotropy, $\epsilon = \delta$ and$\eta = 0$. To see why the group-velocity function becomes elliptic inthis case, note that for small $\delta$\begin{equation}\left. \frac{1}{V_g^2(\psi)} \, \right|_{\eta=0} = \frac{1}{V_z^2\left(1 + 2\,\delta\,\sin^2{\psi} \right) } \approx \frac{\cos^2{\psi}}{V_z^2} + \frac{(1 - 2\,\delta)\,\sin^2{\psi}}{V_z^2}\approx\frac{\cos^2{\psi}}{V_z^2} + \frac{\sin^2{\psi}}{V_n^2} \;.\label{eqn:vgeta1}\end{equation}Seismic data often indicate that $\epsilon > \delta$, so the anellipticitycoefficient $\eta$ is usually positive.%In practical cases of VTI media, $\epsilon$ is often greater than%$\delta$, so the anelliptic parameter $\eta$ is positive.\parAn equivalent form of equation (\ref{eqn:vg}) can be obtained in terms ofthe three characteristic velocities $V_z$, $V_x$, and $V_n$:\begin{equation}V_g^2(\psi) = V_z^2\,\cos^2{\psi} + \left(V_n^2 - V_x^2\right)\,\sin^2{\psi}\,\cos^2{\psi} + V_x^2\,\sin^2{\psi}\;.\label{eqn:vgvs}\end{equation}From equation (\ref{eqn:vgvs}), in the linearapproximation the anelliptic behavior of velocity is controlled bythe difference between the normal moveout and horizontal velocitiesor, equivalently, by the difference between anisotropic coefficients $\epsilon$ and $\delta$.\parWe illustrate different types of the group velocities (wavefronts)in Figure \ref{fig:nmofro}.%anisotropy in Figure \ref{fig:nmofro}, which shows the wavefronts %for different values of the anisotropic parameters. The wavefront, circular in the isotropic case (Figure\ref{fig:nmofro}a), becomes elliptical when $\epsilon=\delta \neq 0$(Figure \ref{fig:nmofro}b). In the ANNIE model, the vertical and NMOvelocities are equal (Figure \ref{fig:nmofro}c). If $\epsilon > 0$ and$\delta < 0$, the three characteristic velocities satisfy theinequality $V_x > V_z > V_n$ (Figure \ref{fig:nmofro}d).\plot{nmofro}{width=6in,height=3in}{Wavefronts in isotropic medium, $\epsilon=\delta=0$ (a),elliptically anisotropic medium, $\epsilon=\delta=0.2$ (b),ANNIE model, $\epsilon=0.2$, $\delta=0$ (c), andanisotropic medium with $\epsilon=0.2$, $\delta=-0.2$ (d).Solid curves represent the wavefronts. %??? -- Make them thicker as was before.%??? -- Replace notation on plots with a, b, c, and d.Dashed lines correspond to isotropic wavefronts for the vertical andhorizontal velocities. %??? -- Make them really dashed, not dash-dotted. %??? -- No need to do it for Vnmo because it is not clear what they show.%Top left: isotropic case%$(\epsilon=\delta=0)$; top right: elliptic case%$(\epsilon=\delta=0.2)$; bottom left: ANNIE model $(\epsilon=0.2,%\delta=0)$; bottom right: strongly anelliptic case $(\epsilon=0.2,%\delta=-0.2)$.}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -