⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 avz.tex

📁 国外免费地震资料处理软件包
💻 TEX
📖 第 1 页 / 共 2 页
字号:
$S_2$, which range from $1$ to $2$, the expression (\ref{eqn:tsvmal}) is positive. This means that the anisotropic approximation(\ref{eqn:TIapprox}) overestimates traveltimes in the isotropicheterogeneous model even more than does the shifted hyperbola (\ref{eqn:malovichko}) shown in Figure~\ref{fig:nmofrz}b. Below, we examine which of the two approximations is more suitable whenthe model includes both vertical heterogeneity and anisotropy.\subsection{Vertically heterogeneous VTI model} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%In a model that includes vertical heterogeneity and anisotropy, bothfactors influence bending of the rays. The weak anisotropyapproximation, however, allows us to neglect the effect of anisotropy on raytrajectories and consider its influence on traveltimes only. Thisassumption is analogous to the linearization, conventionally done fortomographic inversion. Its application to weak anisotropy has beendiscussed by \cite{GEO61-06-18831894}. According to thelinearization assumption, we can retain isotropic equation(\ref{eqn:hp}) describing the ray trajectories and rewrite equation(\ref{eqn:tp}) in the form\begin{equation}t(p) = 2\,\int_{0}^{z}\,{{dz} \over {V_g(z,\psi(z))\,\cos{\psi(z)}}}\;,\label{eqn:TItp} \end{equation}where $V_g$ is the anisotropic group velocity, which varies both with thedepth $z$ and with the ray angle $\psi$ and has the expression(\ref{eqn:vg}). Differentiation of the parametric traveltime equations(\ref{eqn:TItp}) and (\ref{eqn:hp}) and linearization with respect to Thomsen'sanisotropic parameters shows that the general form of equations(\ref{eqn:a0})--(\ref{eqn:a3}) remains valid if we replace the definitions of the root-mean-square velocity $V_{rms}$ and the parameters $M_k$ by \begin{eqnarray}V_{rms}^2 & = & {1 \over t_z}\,\int_{0}^{t_z}\,V_z^{2}(t)\,\left[1 + 2\,\delta(t)\right]\,dt\;,\label{eqn:TIvrms} \\M_k & = & {1 \over t_z}\,\int_{0}^{t_z}\,V_z^{2k}(t)\,\left[1 + 2\,\delta(t)\right]^{2k}\,\left[1 + 8\,\eta(t)\right]\,dt \qquad (k = 2,3, \ldots)\;.\label{eqn:TImk} %\\%S_k & = & {M_k \over {V_{rms}^{2k}}}\qquad (k = 2, 3, \ldots)\;.%\label{eqn:TIsk}\end{eqnarray}%??? Am I right removing this eq? It is the same as eq.(29). --In homogeneous media, expressions (\ref{eqn:TIvrms}) and (\ref{eqn:TImk}) transform series (\ref{eqn:taylor}) withcoefficients (\ref{eqn:a0})--(\ref{eqn:a3}) into the form equivalent toseries (\ref{eqn:TItaylor}). Two important conclusions follow from %the mathematical form of equations (\ref{eqn:TIvrms}) and (\ref{eqn:TImk}). First, if the mean value of the anisotropic coefficient $\delta$ is less than zero, the presence of anisotropy can reduce the differencebetween the effective root-mean-square velocity and the effective vertical velocity $\widehat{V}_z=z/t_z$. In this case, the influence of anisotropyand heterogeneity partially cancel each other, and the moveout curvemay behave at small offsets as if the medium were homogeneous andisotropic. This behavior has been noticed by\cite{GEO58-10-14541467}. On the other hand, if the anellipticitycoefficient $\eta$ is positive and different from zero, it cansignificantly increase the values of the heterogeneity parameters$S_k$ defined by equations~(\ref{eqn:sk}). Then, the nonhyperbolicity of reflection moveouts atlarge offsets is stronger than that in isotropic media.\parTo exemplify the general theory, let us consider a simple analyticmodel with constant anisotropic parameters and the vertical velocitylinearly increasing with depth according to the equation\begin{equation}V_z(z) = V_z(0)\,(1 + \beta \,z) = V_z(0)\,e^{\kappa(z)}\;,\label{eqn:vzlin} \end{equation}where $\kappa$ is the logarithm of the velocity change. In this case,the analytic expression for the RMS velocity $V_{rms}$ is foundfrom equation (\ref{eqn:TIvrms}) to be\begin{equation}V_{rms}^2 = V_z^2(0)\,(1 + 2\,\delta)\,{{e^{2\kappa}-1}\over {2\,\kappa}}\;,\label{eqn:vrmslin} \end{equation}while the mean vertical velocity is\begin{equation}\widehat{V}_z = {z \over t_z} = V_z(0)\,{{e^{\kappa}-1}\over {\kappa}}\;,\label{eqn:hatvzlin} \end{equation}where $\kappa=\kappa(z)$ is evaluated at the reflector depth.Comparing equations (\ref{eqn:vrmslin}) and (\ref{eqn:hatvzlin}), we can see that the squared RMS velocity $V_{rms}^2$ equals to the squared mean velocity$\widehat{V}_z^2$ if\begin{equation}1 + 2\,\delta = {{2\,\left(e^\kappa - 1\right)} \over{\kappa\,\left(e^\kappa + 1\right)}}\;.\label{eqn:deltalin} \end{equation}For small $\kappa$, the estimate of $\delta$ from equation(\ref{eqn:deltalin}) is\begin{equation}\delta \approx - {\kappa^2 \over 24}\;.\label{eqn:appdeltalin} \end{equation}For example, if the vertical velocity near the reflector is twicethat at the surface (i.e., $\kappa = \ln 2 \approx 0.69$), having the anisotropicparameter $\delta$ as small as~$-0.02$ is sufficient to cancel out theinfluence of heterogeneity on the normal-moveout velocity.  The values ofparameters $S_2$ and $S_3$, found from equations~(\ref{eqn:sk}), (\ref{eqn:TIvrms}) and~(\ref{eqn:TImk}), are\begin{eqnarray}S_2 & = & (1 + 8\,\eta)\,\kappa\,{{e^{2\kappa}+1} \over {e^{2\kappa} - 1}}\;,\label{eqn:lins2} \\S_3 & = & {4 \over 3}\,(1 + 8\,\eta)\,\kappa^2\,{{e^{4\kappa} + e^{2\kappa}+1} \over {\left(e^{2\kappa} - 1\right)^2}}\;.\label{eqn:lins3}\end{eqnarray} Substituting equations (\ref{eqn:lins2}) and (\ref{eqn:lins3}) into the estimates (\ref{eqn:malerror}) and (\ref{eqn:tsverror}) and linearizing them both in $\eta$ and in $\kappa$, wefind that the error of anisotropic traveltime approximation(\ref{eqn:TIapprox}) in the linear velocity model is \begin{equation}{{\Delta t^2(l)} \over t^2(0)} = -{{\kappa^2\,(1 - 8\,\eta)} \over 12}\,\left({l \over {t_0\,V_n}}\right)^6\;,\label{eqn:lintsverr}\end{equation}while the error of the shifted-hyperbola approximation(\ref{eqn:malovichko}) is\begin{equation}{{\Delta t^2(l)} \over t^2(0)} = \left({{\kappa^2\,(1 - 8\,\eta)} \over 24} - \eta\right)\,\left({l \over {t_0\,V_n}}\right)^6\;.\label{eqn:linmalerr}\end{equation}%??? Please put the correct sign into one of the previous two eqs. Otherwise,%eq.(53) does not seem correct -- that is why I thought it is incorrect. --Comparing equations (\ref{eqn:lintsverr}) and (\ref{eqn:linmalerr}), we conclude that if the medium is elliptically anisotropic $(\eta=0)$, the shifted hyperbola can be twice as accurate as the anisotropic equation (assuming the optimal choice of parameters). The accuracy of the latter,however, increases when the anellipticity coefficient $\eta$ grows andbecomes higher than that of the shifted hyperbola if $\eta$ satisfiesthe approximate inequality \begin{equation}\eta \geq {\kappa^2 \over {8\,(1 + \kappa^2)}}\;.\label{eqn:lineta}\end{equation}%??? -- I got from equations (\ref{eqn:lintsverr}) and (\ref{eqn:linmalerr})%\[%  \eta \geq {\kappa^2 \over {4\,(3 + 2\,\kappa^2)}}\;.%\]%Who is right?For instance, if $\kappa = \ln 2$, inequality~(\ref{eqn:lineta}) yields$\eta \geq 0.03$, a quite small value.%\begin{comment}%\subsection{Stolt Stretch}%%%%%%%%%%%%%%%%%%%%%%Stolt stretch%\cite{GEO43.01.00230048,Levin.sep.42.373,Claerbout.blackwell.85} is%a method of extending constant-velocity frequency-domain migration to%the case of a vertically variable velocity. The method consists of%stretching the time axis according to the equation%\begin{equation}%\tau(t_z)=%\left({{2 \over V_0^2}\,\int_0^{t_z}\,t\,V_{rms}^2(t)\,dt}\right)^{1/2}\;,%\label{eqn:ss} %\end{equation}%double Fourier transform, and migration according to the dispersion%relation%\begin{equation}%\omega_m(k,\omega_0)=%\left(1-{1\over W}\right)\,\omega_0+%{{\mbox{sign}(\omega_0)}\over W}\,%\sqrt{\omega_0^2 - W\,V_0^2\,k_x^2}\;,%\label{eqn:sdispersion} %\end{equation}%where $V_0$ is a constant frame velocity, $\omega_0$ and $\omega_m$%are the frequencies before and after the migration, corresponding to%the stretched time coordinate, $k_x$ is the wavenumber, and $W$ is a%constant parameter ($W=1$ in the constant velocity case). Fomel%\shortcite{Fomel.sep.84.61} has shown that the optimal choice of the%Stolt stretch parameter $W$ for a particular traveltime depth $t_z$ is%given by the expression%\begin{equation}%W=1-{{V_0^2\,\tau^2\left(t_z\right)} \over{V_{rms}^2\left(t_z\right) t_z^2}}\,%\left({{V^2\left(t_z\right)} \over {V_{rms}^2\left(t_z\right)}}%-S_2\left(t_z\right)%\right)\;\;.%\label{eqn:main} %\end{equation}%This expression remains valid in the case of a vertically%heterogeneous VTI medium if the values of $V_{rms}$ and $S_2$ are%computed according to equations (\ref{eqn:TIvrms}) and%(\ref{eqn:TIsk}). The method of cascaded migrations%\cite{GEO52.05.06180643} can improve the performance of Stolt%migration in the case of variable velocity \cite{GEO53.07.08810893}.%However, this method affects only the isotropic part of the model and%cannot change the contribution of the anisotropic parameters.%Therefore, in the anisotropic case, it is important to incorporate%anisotropic parameters into the Stolt stretch correction.%\end{comment}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -