📄 avz.tex
字号:
\section{VERTICAL HETEROGENEITY}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Vertical heterogeneity is another reason for nonhyperbolicmoveout. We start this section by reviewing well-known results forisotropic media. Although these results can be interpretedin terms of an effective anisotropy, we show that it has different propertiesthan those for the VTI model. We then extend the theory to vertically heterogeneousVTI media and perform a comparative analysis of various three-parameter nonhyperbolic approximations.\inputdir{Math}\subsection{Vertically heterogeneous isotropic model} %%%%%%%%%%%%%%%%%%%%%%Nonhyperbolicity of reflection moveout in vertically heterogeneousisotropic media has been extensively studied using theTaylor series expansion in the powers of the offset\cite[]{der,taner,GPR21-04-07830795}. The most important property ofvertically heterogeneous media is that the ray parameter \[p \equiv {{\sin{\psi}(z)} \over {V_z(z)}}\]does not change alongany given ray (Snell's law). This fact leads to the explicit parametricrelationships \begin{eqnarray}t(p) & = & 2\,\int_{0}^{z}\,{{dz} \over {V_z(z)\,\cos{\psi(z)}}} =\int_{0}^{t_z}\,{{dt_z} \over {\sqrt{1 - p^2\,V_z^2(t_z)}}}\;,\label{eqn:tp} \\ l(p) & = & 2\,\int_{0}^{z}\,{{dz}\,\tan{\psi(z)}} =\int_{0}^{t_z}\,{{p\,V_z^2(t_z)\,dt_z} \over {\sqrt{1 - p^2\,V_z^2(t_z)}}}\;,\label{eqn:hp}\end{eqnarray}where\begin{equation}t_z = t(0) = 2\,\int_{0}^{z}\,{{dz} \over {V_z(z)}}\;.\label{eqn:tz}\end{equation}Straightforward differentiation of parametric equations (\ref{eqn:tp})and (\ref{eqn:hp}) yields the first four coefficients of the Taylorseries expansion\begin{equation}t^2(l) = a_0 + a_1\,l^2 + a_2\,l^4 + a_3\,l^6 + \ldots\label{eqn:taylor}\end{equation}in the vicinity of the vertical zero-offset ray. Series(\ref{eqn:taylor}) contains only even powers of the offset $l$ becauseof the reciprocity principle: the pure-mode reflection traveltime is an evenfunction of the offset. The Taylor series coefficients for the isotropic caseare defined as follows:\begin{eqnarray}a_0 & = & t_z^2\;,\label{eqn:a0} \\a_1 & = & {1 \over V_{rms}^2}\;,\label{eqn:a1} \\a_2 & = & {{1 - S_2} \over {4\,t_z^2\,V_{rms}^4}}\;,\label{eqn:a2} \\a_3 & = & {{2\,S_2^2 - S_2 - S_3} \over {8\,t_z^4\,V_{rms}^6}}\;,\label{eqn:a3}\end{eqnarray}where \begin{eqnarray}V_{rms}^2 = M_1 \, ,\label{eqn:a31}\end{eqnarray}\begin{eqnarray}M_k & = & {1 \over t_z}\,\int_{0}^{t_z}\,V_z^{2k}(t)\,dt \qquad(k = 1, \, 2, \, \ldots)\;,\label{eqn:mk} \\S_k & = & {M_k \over {V_{rms}^{2k}}} \qquad (k = 2, \, 3, \, \ldots)\;.\label{eqn:sk}\end{eqnarray}Equation (\ref{eqn:a1}) shows that, at small offsets, the reflectionmoveout has a hyperbolic form with the normal-moveout velocity $V_n$equal to the root-mean-square velocity $V_{rms}$. At large offsets,however, the hyperbolic approximation is no longer accurate. Studyingthe Taylor series expansion (\ref{eqn:taylor}), \cite{malov}introduced a three-parameter approximation for the reflectiontraveltime in vertically heterogeneous isotropic media.%\cite{malov,Sword.sep.51.313}. His equation has the form of ashifted hyperbola \cite[]{castle,nmo}:\begin{equation}t(l) = \left(1 - {1 \over S}\right)\,t_0 + {1 \over S} \sqrt{t_0^2 + S\,{l^2 \over V_n^2}}\;.\label{eqn:malovichko}\end{equation}\parIf we set the zero-offset traveltime $t_0$ equal to the verticaltraveltime $t_z$, the velocity $V_n$ equal to $V_{rms}$, and the {\emparameter of heterogeneity} $S$ equal to $S_2$, equation(\ref{eqn:malovichko}) guarantees the correct coefficients $a_0$, $a_1$, and$a_2$ in the Taylor series (\ref{eqn:taylor}). Note that the parameter $S_2$is related to the variance $\sigma^2$ of the squared velocitydistribution, as follows:\begin{equation}\sigma^2 = M_2 - V_{rms}^4 = V_{rms}^4\,(S_2 -1)\;.\label{eqn:sigma2}\end{equation}According to equation (\ref{eqn:sigma2}), this parameter is always greaterthan unity (it equals 1 in homogeneous media). In many practical cases, the value of $S_2$ lies between~$1$ and~$2$. We canroughly estimate the accuracy of approximation (\ref{eqn:malovichko}) atlarge offsets by comparing the fourth term of its Taylor series withthe fourth term of the exact traveltime expansion (\ref{eqn:taylor}).According to this estimate, the error of Malovichko's approximation is\begin{equation}{{\Delta t^2(l)} \over t^2(0)} = {1 \over 8} (S_3-S_2^2)\,\left({l \over {t_0\,V_n}}\right)^6\;.\label{eqn:malerror}\end{equation}As follows from the definition of the parameters $S_k$ [equations~(\ref{eqn:sk})] and the Cauchy-Schwartz inequality, the expression(\ref{eqn:malerror}) is always nonnegative. This means that the shifted-hyperbola approximationtends to overestimate traveltimes at large offsets. As the offsetapproaches infinity, the limit of this approximation is \begin{equation}\lim_{l \rightarrow \infty} t^2(l) = {1 \over S}\,{l^2 \over V_n^2}\;.\label{eqn:Mhlimit}\end{equation}\parEquation (\ref{eqn:Mhlimit}) indicates that the effective horizontalvelocity for Malovichko's approximation (the slope of the shiftedhyperbola asymptote) differs from the normal-moveout velocity. One can interpret this difference as evidence of some \emph{effective}depth-variant anisotropy. However, the anisotropy implied inequation (\ref{eqn:malovichko}) differs from the true anisotropy in a homogeneous transversely isotropic medium [see equation (\ref{eqn:vg})]. To reveal this difference, let us substitutethe effective values $t(l) = {\sqrt{4\,z^2 + l^2} / {V_g(\psi)}}$,$~t_0 = {2\,z / V_z}$, $~l = 2\,z\,\tan{\psi}$, and $S = {V_x^2 / V_n^2}$ into equation (\ref{eqn:malovichko}). After eliminating thevariables $z$ and $l$, the result takes the form\begin{equation}{1 \over {V_g(\psi)}} = {1 \over V_z}\,\left\{\cos{\psi}\left(1 - {V_n^2 \over V_x^2}\right) +\sqrt{{V_z^2 \over V_x^2}\,\sin^2{\psi} +{V_n^4 \over V_x^4}\,\cos^2{\psi}}\right\}.\label{eqn:mal2vg}\end{equation}If the anisotropy is induced by vertical heterogeneity, $V_x \ge V_n \ge V_z$. Those inequalities follow from the definitions of $V_{rms}$, $t_z$,$S_2$, and the Cauchy-Schwartz inequality. They reduce to equalities onlywhen velocity is constant. Linearizing expression(\ref{eqn:mal2vg}) with respect to Thomsen's anisotropic parameters $\delta$and $\epsilon$, we can transform it to the form analogous tothat of equation (\ref{eqn:vgeta}):\begin{equation}V_g^2(\psi) = V_z^2\,\left[\,1 + 2\,\delta\,\sin^2{\psi} + 2\,\eta\,(1 - \cos{\psi})^2\right]\;.\label{eqn:vgvz}\end{equation}Figure \ref{fig:nmofrz} illustrates the difference between the VTImodel and the effective anisotropy implied by the Malovichko approximation. The differences are noticeable in both the shapes of the effective wavefronts(Figure \ref{fig:nmofrz}a) and the moveouts (Figure \ref{fig:nmofrz}b).\plot{nmofrz}{width=6in,height=1.5in}{Comparison of thewavefronts (a) and moveouts (b) in the VTI (solid) and verticallyinhomogeneous isotropic media (dashed). The values of the effective vertical, horizontal, and NMO velocities are the samein both media and correspond to Thomsen's parameters $\epsilon = 0.2$ and$\delta = 0.1$.}%??? -- Label the plots with a and b. %??? -- Remove the numbers from the b-plot.%??? -- Replace the dash-dotted line with dashed.} \parIn deriving equation (\ref{eqn:vgvz}), we have assumed the correspondence\begin{equation}S = {V_x^2 \over V_n^2} = {{1 + 2\,\epsilon} \over {1 + 2\,\delta}} \approx 1 + 2\,\eta\;.\label{eqn:sone}\end{equation}We could also have chosen the value of the parameter of heterogeneity $S$ thatmatches the coefficient $a_2$ given by equation (\ref{eqn:a2}) withthe corresponding term in the Taylor series (\ref{eqn:TItaylor}).Then, the value of $S$ is \cite[]{GEO62-06-18391854}\begin{equation}S = 1 + 8\,\eta\;.\label{eqn:stwo}\end{equation}The difference between equations (\ref{eqn:sone}) and (\ref{eqn:stwo}) is anadditional indicator of the fundamental difference between homogeneous VTI and vertically heterogeneous isotropic media. The three-parameter anisotropic approximation (\ref{eqn:TIapprox}) can match thereflection moveout in the isotropic model up to the fourth-order term in the Taylor series expansion if the value of$\eta$ is chosen in accordance with equation (\ref{eqn:stwo}). We canestimate the error of such an approximation with an equation analogousto (\ref{eqn:malerror}): \begin{equation}{{\Delta t^2(l)} \over t^2(0)} = {1 \over 8} (S_3-2 + 3\,S_2-2\,S_2^2)\,\left({l \over {t_0\,V_n}}\right)^6\;.\label{eqn:tsverror}\end{equation}The difference between the error estimates (\ref{eqn:malerror}) and(\ref{eqn:tsverror}) is\begin{equation}{{\Delta t^2(l)} \over t^2(0)} = {1 \over 8} (2 - S_2)\,(S_2-1)\,\left({l \over {t_0\,V_n}}\right)^6\;.\label{eqn:tsvmal}\end{equation}For usual values of %the parameter of heterogeneity
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -