📄 hrf.tex
字号:
\section{HORIZONTAL REFLECTOR BENEATH A HOMOGENEOUS VTI MEDIUM}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\inputdir{XFig}To exemplify the use of weak anisotropy, let us consider thesimplest model of a homogeneous VTI medium above a horizontalreflector. For an isotropic medium, the reflection traveltime curve isan exact hyperbola, as follows directly from the Pythagorean theorem(Figure \ref{fig:nmoone})\begin{equation}t^2(l) = {{4\,z^2 + l^2} \over V_z^2} = t_0^2 + {l^2 \over V_z^2}\;,\label{eqn:pifagor}\end{equation}where $z$ denotes the depth of reflector, $l$ is the offset,$t_0=t(0)$ is the zero-offset traveltime, and $V_z$ is theisotropic velocity. For a homogeneous VTI medium, thevelocity $V_z$ in equation (\ref{eqn:pifagor}) is replaced by theangle-dependent group velocity $V_g$. This replacement leads to theexact traveltimes if no approximation for the group velocity is used,since the ray trajectories in homogeneous VTI media remain straight,and the reflection point does not move. We can also obtain an approximate traveltime using theapproximate velocity $V_g$ defined by equations (\ref{eqn:vg}) or(\ref{eqn:vgeta}), where the ray angle $\psi$ is given by \begin{equation}\sin^2{\psi} = {{l^2} \over {4\,z^2 + l^2}}\;.\label{eqn:sinpsi}\end{equation}Substituting equation (\ref{eqn:sinpsi}) into (\ref{eqn:vgeta}) andlinearizing the expression\begin{equation} t^2(l) = {{4\,z^2 + l^2} \over V_g^2(\psi)}\label{eqn:TIpifagor}\end{equation}with respect to the anisotropic parameters $\delta$ and $\eta$, we arriveat the three-parameter nonhyperbolic approximation \cite[]{tsvantom}\begin{equation}t^2(l) = t_0^2 + {l^2 \over V_n^2} - {{2\,\eta\,l^4} \over {V_n^2\,\left(V_n^2 t_0^2 + l^2\right)}}\;,\label{eqn:TIapprox}\end{equation}where the normal-moveout velocity $V_n$ is defined by equation(\ref{eqn:vn}). At small offsets $(l \ll z)$, the influence of theparameter $\eta$ is negligible, and the traveltime curve is nearlyhyperbolic. At large offsets $(l \gg z)$, the third term in equation(\ref{eqn:TIapprox}) has a clear influence on the traveltime behavior.The Taylor series expansion of equation (\ref{eqn:TIapprox}) in the vicinity of the vertical zero-offset ray has the form\begin{equation}t^2(l) = t_0^2 + {l^2 \over V_n^2} - {{2\,\eta\,l^4} \over {V_n^4\,t_0^2}} + {{2\,\eta\,l^6} \over {V_n^6\,t_0^4}} - \ldots \;.\label{eqn:TItaylor}\end{equation}When the offset $l$ approaches infinity, the traveltimeapproximately satisfies an intuitively reasonable relationship\begin{equation}\lim_{l \rightarrow \infty} t^2(l) = {l^2 \over V_x^2}\;,\label{eqn:hlimit}\end{equation}where the horizontal velocity $V_x$ is defined by equation~(\ref{eqn:vx}). Approximation (\ref{eqn:TIapprox}) is analogous, within the weak-anisotropy assumption, to the ``skewed hyperbola'' equation\cite[]{GEO54-12-15641574} which uses the three velocities $V_z$, $V_n$,and $V_x$ as the parameters of the approximation:\begin{equation}t^2(l) = t_0^2 + {l^2 \over V_n^2} - {{l^4} \over {V_n^2 t_0^2 + l^2}}\,\left({1 \over V_n^2} - {1 \over V_x^2}\right)\;.\label{eqn:BHapprox}\end{equation}The accuracy of equation (\ref{eqn:TIapprox}), which usually lies within 1\% error up to offsets twice as large as reflector depth, can be further improved at anyfinite offset by modifying the denominator of the third term\cite[]{aktsvan,grektsvan}.\plot{nmoone}{width=6in,height=3in}{Reflected raysin a homogeneous VTI layer above a horizontal reflector (a scheme).}%??? -- Move the vertical dashed line exactly to the reflection point.}\par\cite{Muir.sep.44.55} suggested a different nonhyperbolic moveoutapproximation in the form%\begin{equation}%t^2(l) = {{t_0^4 + (1 + f)\,{l^2 \over V_n^2} + f^2 {{l^4} \over%{V_n^4}}} \over {{t_0^2 + f\,{l^2 \over V_n^2}}}} =%t_0^2 + {l^2 \over V_n^2} - {{f\,(1-f)\,l^4} \over%{V_n^2\,\left(V_n^2 t_0^2 + f\,l^2\right)}}\;,%\label{eqn:DMapprox}%\end{equation}\begin{equation}t^2(l) = t_0^2 + {l^2 \over V_n^2} - {{f\,(1-f)\,l^4} \over {V_n^2\,\left(V_n^2 t_0^2 + f\,l^2\right)}}\;,\label{eqn:DMapprox}\end{equation}where $f$ is the dimensionless parameter of anellipticity. At largeoffsets, equation (\ref{eqn:DMapprox}) approaches\begin{equation}\lim_{l \rightarrow \infty} t^2(l) = f\,{l^2 \over V_n^2}\;.\label{eqn:DMhlimit}\end{equation}Comparing equations (\ref{eqn:hlimit}) and (\ref{eqn:DMhlimit}), wecan establish the correspondence\begin{equation}f = {{V_n^2} \over {V_x^2}} = {{1 + 2\,\delta} \over {1 +2\,\epsilon}} \approx 1 - 2\,\eta\;.\label{eqn:f2eta}\end{equation}Taking this equality into account, we see that equation(\ref{eqn:DMapprox}) is approximately equivalent to equation(\ref{eqn:TIapprox}) in the sense that their difference has the orderof $\eta^2$.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -