⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lat.tex

📁 国外免费地震资料处理软件包
💻 TEX
字号:
\section{ANISOTROPY VERSUS LATERAL HETEROGENEITY}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%The nonhyperbolic moveout in homogeneous VTI media with one horizontal reflectoris similar to that caused by lateral heterogeneity in isotropic models.In this section, we discuss this similarity following the results of \cite{GEO63-01-02040212}.\parThe angle dependence of the group velocity in equations (\ref{eqn:vg})and (\ref{eqn:vgeta}) is characterized by {\em small}$\,$ anisotropiccoefficients. Therefore, we can assume that an analogous influence oflateral heterogeneity might be caused by {\em small}$\,$ velocityperturbations. (Large lateral velocity changes can cause behavior toocomplicated for analytic description.) An appropriate model is a planelaterally heterogeneous layer with the velocity\begin{equation} V(y) = V_0\,\left[ 1 + c(y) \right]\;, \label{eqn:eq20} \end{equation} where $|c(y)| \ll 1$ is a dimensionless function.  The velocity $V(y)$given by equation (\ref{eqn:eq20}) has the generic perturbationform that allows us to use the tomographic linearization assumption.That is, we neglect the ray bending caused by the small velocityperturbation $c$ and compute the perturbation of traveltimes alongstraight rays in the constant-velocity background. Thus, we can rewriteequation (\ref{eqn:pifagor}) as\begin{equation}  t(l) = {\sqrt{4\,z^2 + l^2} \over {l}}\,\int\limits_{y-l/2}^{y+l/2}{ d\xi    \over V_z(\xi) }\;,\label{eqn:eq21}\end{equation}where $y$ is the midpoint location and the integration limits correspondto the source and receiver locations. For simplicity and without lossof generality, we can set $y$ to zero. Linearizing equation~(\ref{eqn:eq21})with respect to the small perturbation $c(y)$, we get\begin{equation}t(l) = { \sqrt{4\,z^2 + l^2} \over V_0 } \left[ 1 - {1 \over {l}}        \int\limits_{-l/2}^{l/2} c(\xi) d\xi \right]\;.\label{eqn:eq22}\end{equation}\parIt is clear from equation (\ref{eqn:eq22}) that lateralheterogeneity can cause many different types of the nonhyperbolic moveout.In particular, comparing equations (\ref{eqn:eq22}) and(\ref{eqn:TIpifagor}), we conclude that a pseudo-anisotropic behavior oftraveltimes is produced by lateral heterogeneity in the form\begin{equation}   c(l) = { d \over {d l}}              \left[{ {l^3 (l^2 \epsilon + 4\,z^2 \delta )} \over                       {(l^2 + 4\,z^2)^2} } \right]\label{eqn:eq25}\end{equation}or, in the linear approximation,\begin{equation}c(l) = \frac{4 \, \delta\,t_0^2\,V_n^2\,l^2\,(3 \, t_0^2 V_n^2 - l^2)              + \epsilon\,l^4\,(5 \, t_0^2 V_n^2 + l^2)}             {16 \left(t_0^2 V_n^2 + l^2 \right)^3} \;,\label{eqn:eq26}\end{equation}where $\delta$ and $\epsilon$ should be considered now as parameters, describing the {\em isotropic}$\,$ laterally heterogeneous velocityfield.  Equation (\ref{eqn:eq26}) indicates that the velocity heterogeneity$c(y)$ that reproduces moveout (\ref{eqn:TIapprox}) in a homogeneous VTI medium,is a symmetric function of the offset $l$. This is not surprisingbecause the velocity function (\ref{eqn:vg}), corresponding to verticaltransverse isotropy, is symmetric as well.%For more details on the interplay between lateral heterogeneity and%transverse isotropy see \longcite{GEO63-01-02040212}.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -