⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 paper.tex

📁 国外免费地震资料处理软件包
💻 TEX
📖 第 1 页 / 共 3 页
字号:
\plot{sincint}{width=6in}{Sinc interpolant (left) and its spectrum  (right).}Function~(\ref{eq:w-cft}) is well-known as the Shannon sincinterpolant. According to the sampling theorem\cite[]{kotelnikov,shannon}, it provides an optimal interpolation forband-limited signals.  A known problem prohibiting its practicalimplementation is the slow decay with $(x - n)$, which results in afar too expensive computation. This problem is solved in practice withheuristic tapering \cite[]{Hale.sep.25.39}, such as triangle tapering\cite[]{Harlan.sep.30.103}, or more sophisticated taper windows\cite[]{wolberg}. One popular choice is the Kaiser window \cite[]{kaiser},which has the form\begin{equation}  \label{eqn:kais}  W (x, n) = \left\{\begin{array}{lcr} \displaystyle      \frac{\sin \left[\pi (x - n) \right]}{\pi (x - n)}\,      \frac{I_0\left(a\,\sqrt{1-\left(\frac{x-n}{N}\right)^2}\right)}      {I_0(a)} & \mbox{for} & n - N < x < n + N \\      0, & \mbox{otherwise} &\end{array}\right.\end{equation}where $I_0$ is the zero-order modified Bessel function of the firstkind.  The Kaiser-windowed sinc interpolant~(\ref{eqn:kais}) has theadjustable parameter $a$, which controls the behavior of itsspectrum. I have found empirically the value of $a=4$ to providea spectrum that deviates from 1 by no more than 1\% in a relativelywide band.While the function $W$ from equation (\ref{eq:w-cft}) automaticallysatisfies properties (\ref{eq:sum}) and (\ref{eq:intwdx}), where both$x$ and $n$ range from $-\infty$ to $\infty$, its tapered version mayrequire additional normalization.\inputdir{chirp}Figure~\ref{fig:cubkai} compares the interpolation error of the8-point Kaiser-tapered sinc interpolant with that of cubic convolutionon the example from Figure~\ref{fig:chirp}. The accuracy improvementis clearly visible.\sideplot{cubkai}{height=2.5in}{Interpolation error of the  cubic-convolution interpolant (dashed line) compared to that of an  8-point windowed sinc interpolant (solid line).}The differences among the described forward interpolation methods arealso clearly visible from the discrete spectra of the correspondinginterpolants.  The left plots in Figures~\ref{fig:speclincub}and~\ref{fig:speccubkai} show discrete interpolation responses: thefunction $W(x,n)$ for a fixed value of $x=0.7$. The right plotscompare the corresponding discrete spectra. Clearly, the spectrum getsflatter and wider as the accuracy of the method increases.\sideplot{speclincub}{height=2.5in}{Discrete interpolation responses  of linear and cubic convolution interpolants (left) and their  discrete spectra (right) for $x=0.7$.}\sideplot{speccubkai}{height=2.5in}{Discrete interpolation responses  of cubic convolution and 8-point windowed sinc interpolants (left)  and their discrete spectra (right) for $x=0.7$.}\subsection{Discrete Fourier basis}\inputdir{Math}Assuming that the range of the variable $x$ is limited in the intervalfrom $-N$ to $N$, the discrete Fourier basis (\emph{Fast Fourier  Transform}) employs a set of orthonormal periodic functions\begin{equation}\label{eq:fft}  \psi_k (x) = \frac{1}{\sqrt{2N}} e^{i \pi \frac{k}{N} x} \;,\end{equation}where the discrete frequency index $k$ also ranges, according to theNyquist sampling criterion, from $-N$ to $N$. The interpolationfunction is computed from equation~(\ref{eq:solution}) to be\begin{eqnarray}\label{eq:w-fft}  W (x, n) & = & \frac{1}{2 N} \sum_{k=-N}^{N-1} e^{i \pi \frac{k}{N} (x-n)} =\frac{1}{2 N} e^{- i \pi (x-n)} \left[  1 + e^{i \pi \frac{x-n}{N}} + \cdots +  e^{i \pi \frac{2N-1}{N} (x-n)}\right] =  \nonumber \\& & \frac{1}{2 N} e^{- i \pi (x-n)}\frac{e^{2i \pi (x-n)} - 1}{e^{i \pi \frac{x-n}{N}} - 1} =\frac{1}{2 N} e^{- i \pi \frac{x-n}{2 N}}\frac{e^{i \pi (x-n)} - e^{-i \pi (x-n)}}{e^{i \pi \frac{x-n}{2 N}} -e^{- i \pi \frac{x-n}{2 N}}} = \nonumber \\& & e^{-i \pi \frac{x-n}{2 N}}\frac{\sin \left[\pi (x - n)\right]}{2N \sin\left[\pi (x - n)/2N\right]} \;.\end{eqnarray}An interpolation function equivalent to (\ref{eq:w-fft}) has beenfound by Muir \cite[]{Lin.sep.79.255,Popovici.sep.79.261,muir}. It canbe considered a tapered version of the sinc interpolant(\ref{eq:w-cft}) with smooth tapering function\[\frac{\pi (x - n)/2N}{\tan\left[\pi (x - n)/2N\right]}\;.\]Unlike most other tapered-sinc interpolants, Muir's interpolant(\ref{eq:w-fft}) satisfies not only the obvious property(\ref{eq:wnn}), but also properties (\ref{eq:sum}) and(\ref{eq:intwdx}), where the interpolation function $W (x,n)$ shouldbe set to zero for $x$ outside the range from $n - N$ to $n+N$. Theform of this function is shown in Figure \ref{fig:ma-sinc}.\plot{ma-sinc}{width=6.0in}{The left plots show the sinc interpolation  function.  Note the slow decay in $x$. The middle shows the  effective tapering function of Muir's interpolation; the right is  Muir's interpolant. The top is for $N=2$ (5-point interpolation);  the bottom, $N=6$ (13-point interpolation).}The development of the mathematical wavelet theory \cite[]{wavelet} hasopened the door to a whole universe of orthonormal function bases,different from the Fourier basis. The wavelet theory should find manyuseful applications in geophysical data interpolation, but exploringthis interesting opportunity would go beyond the scope of the presentwork.The next section carries the analysis to the continuum and comparesthe mathematical interpolation theory with the theory of seismicimaging.\section{Continuous case and seismic imaging}Of course, the linear theory is not limited to discrete grids.  It isinteresting to consider the continuous case because of its connectionto the linear integral operators commonly used in seismic imaging.Indeed, in the continuous case, linear decomposition (\ref{eq:basis})takes the form of the integral operator\begin{equation}\label{eq:cont} f (y) = \int m (x) G (y; x) d x \;,\end{equation}where $x$ is a continuous analog of the discrete coefficient $k$ in(\ref{eq:basis}), the continuous function $m (x)$ is analogous to thecoefficient $c_k$, and $G (y; x)$ is analogous to one of the basisfunctions $\psi_k (x)$. The linear integral operator in(\ref{eq:cont}) has a mathematical form similar to the form ofwell-known integral imaging operators, such as Kirchhoff migration or``Kirchhoff'' DMO. Function $G (y; x)$ in this case represents theGreen's function (impulse response) of the imaging operator.  Lineardecomposition of the data into basis functions means decomposing itinto the combination of impulse responses (``hyperbolas'').In the continuous case, equation~(\ref{eq:solution}) transforms to\begin{equation}\label{eq:wyn}  W (y, n) = \int\!\!\int \Psi^{-1} (x_1, x_2) G (y;x_1) \bar{G} (n;x_2)  dx_1\,dx_2\;,\end{equation}where $\Psi^{-1} (x_1, x_2)$ refers to the inverse of the ``matrix''operator\begin{equation}\label{eq:psi}  \Psi (x_1, x_2) = \int G (y;x_1) \bar{G} (y;x_2) dy\;.\end{equation}When the linear operator, defined by equation~(\ref{eq:cont}), is\emph{unitary},\begin{equation}\label{eq:delta}\Psi^{-1} (x_1, x_2) = \delta (x_1 - x_2)\;,\end{equation}and equation~(\ref{eq:wyn}) simplifies to the single integral\begin{equation}\label{eq:wxn}  W (y, n) = \int G (y;x) \bar{G} (n;x) dx \;.\end{equation}With respect to seismic imaging operators, one can recognize in theinterpolation operator (\ref{eq:wxn}) the generic form of azimuth moveout\cite[]{Biondi.sep.93.15}, which is derived either as a cascade of adjoint($\bar{G}(n;y)$) and forward ($G (x;y)$) DMO or as a cascade of migration($\bar{G} (n;y)$) and modeling ($G (x;y)$)\cite[]{Fomel.sep.84.25,GEO63-02-05740588}. In the first case, theintermediate variable $y$ corresponds to the space of zero-offset data cube.In the second case, it corresponds to a point in the subsurface.\subsection{Asymptotically pseudo-unitary operators as orthonormal bases}It is interesting to note that many integral operators routinely usedin seismic data processing have the form of operator (\ref{eq:cont})with the Green's function\begin{equation}  \label{eq:green}  G (t,\mathbf{y};z,\mathbf{x}) = \left|\frac{\partial}{\partial t}\right|^{m/2}  A (\mathbf{x};t,\mathbf{y})  \delta \left(z - \theta(\mathbf{x};t,\mathbf{y}) \right)\;.\end{equation}where we have split the variable $x$ into the one-dimensionalcomponent $z$ (typically depth or time) and the $m$-dimensionalcomponent $\mathbf{x}$ (typically a lateral coordinate with $m$ equal$1$ or $2$). Similarly, the variable $y$ is split into $t$ and$\mathbf{y}$.  The function $\theta$ represents the \emph{summation  path}, which captures the kinematic properties of the operator, and$A$ is the amplitude function. In the case of $m=1$, the fractionalderivative $\left|\frac{\partial}{\partial t}\right|^{m/2}$ is definedas the operator with the frequency response $(i\,\omega)^{m/2}$, where$\omega$ is the temporal frequency \cite[]{samko}.The impulse response (\ref{eq:green}) is typical for different formsof Kirchhoff migration and datuming as well as for velocity transform,integral offset continuation, DMO, and AMO. Integral operators of thatclass rarely satisfy the unitarity condition, with the Radon transform(slant stack) being a notable exception. In an earlier paper\cite[]{Fomel.sep.92.267}, I have shown that it is possible to definethe amplitude function $A$ for each kinematic path $\theta$ so thatthe operator becomes \emph{asymptotically pseudo-unitary}. This meansthat the adjoint operator coincides with the inverse in thehigh-frequency (stationary-phase) approximation.  Consequently,equation (\ref{eq:delta}) is satisfied to the same asymptotic order.Using asymptotically pseudo-unitary operators, we can apply formula(\ref{eq:wxn}) to find an explicit analytic form of the interpolationfunction $W$, as follows:\begin{eqnarray}  \label{eq:apu}  W (t, \mathbf{y}; t_n, \mathbf{y}_n) =  \int\!\!\int  G (t, \mathbf{y}; z,\mathbf{x})\, G(t_n,\mathbf{y}_n;z,\mathbf{x})\,  d z \, d \mathbf{x} =  \nonumber \\  \left|\frac{\partial}{\partial t}\right|^{m/2}  \left|\frac{\partial}{\partial t_n}\right|^{m/2} \int  A (\mathbf{x};t,\mathbf{y}) \, A (\mathbf{x};t_n,\mathbf{y}_n)\,  \delta \left(\theta(\mathbf{x};t  ,\mathbf{y}  ) -               \theta(\mathbf{x};t_n,\mathbf{y}_n) \right) \,             d \mathbf{x}\;.\end{eqnarray}Here the amplitude function $A$ is defined according to the generaltheory of asymptotically pseudo-inverse operators as\begin{equation}A = {\frac{1}{\left(2\,\pi\right)^{m/2}}}\,{\left|F\,\widehat{F}\right|^{1/4}\,\left|\frac{\partial \theta}{\partial t}\right|^{(m+2)/4}}\;,\label{eq:weight}\end{equation}where\begin{eqnarray}F & = & \frac{\partial \theta}{\partial t}\,\frac{\partial^2 \theta}{\partial \mathbf{x}\, \partial \mathbf{y}} -\frac{\partial \theta}{\partial \mathbf{y}}\,\frac{\partial^2 \theta}{\partial \mathbf{x}\, \partial t}\;, \\\widehat{F} & = & \frac{\partial \widehat{\theta}}{\partial z}\,\frac{\partial^2 \widehat{\theta}}{\partial \mathbf{x}\, \partial \mathbf{y}} -\frac{\partial \widehat{\theta}}{\partial \mathbf{x}}\,\frac{\partial^2 \widehat{\theta}}{\partial \mathbf{y}\, \partial z}\;,\end{eqnarray}and $\widehat{\theta} (\mathbf{x};t,\mathbf{y})$ is the \emph{dual}summation path, obtained by solving equation $z=\theta(x;t,y)$ for $t$(assuming that an explicit solution is possible).For a simple example, let us consider the case of zero-offset timemigration with a constant velocity $v$. The summation path $\theta$in this case is an ellipse\begin{equation}  \label{eq:ellips}  \theta(\mathbf{x};t,\mathbf{y}) = \sqrt{t^2 -    \frac{(\mathbf{x}-\mathbf{y})^2}{v^2}}\;,\end{equation}and the dual summation path $\widehat{\theta}$ is a hyperbola\begin{equation}  \label{eq:hyper}  \widehat{\theta}(\mathbf{y};z,\mathbf{x}) = \sqrt{z^2 +    \frac{(\mathbf{x}-\mathbf{y})^2}{v^2}}\;.\end{equation}The corresponding pseudo-unitary amplitude function is found fromformula (\ref{eq:weight}) to be \cite[]{Fomel.sep.92.267}\begin{equation}  A = {\frac{1}{\left(2\,\pi\right)^{m/2}}}\,  {\frac{\sqrt{t/z}}{v^m z^{m/2}}}\;.\label{eq:zomig}\end{equation}Substituting formula (\ref{eq:zomig}) into (\ref{eq:apu}), we derivethe corresponding interpolation function\begin{equation}  \label{eq:pumig}  W (t, \mathbf{y}; t_n, \mathbf{y}_n)  = \frac{1}{\left(2\,\pi\right)^{m}} \,  \left|\frac{\partial}{\partial t}\right|^{m/2}  \left|\frac{\partial}{\partial t_n}\right|^{m/2} \int  \frac{\sqrt{t\,t_n}}{v^{2m} z^{m+1}}\,  \delta (z - z_n) \,d \mathbf{x}\;,\end{equation}where $z = \theta(\mathbf{x};t,\mathbf{y})$, and $z_n =\theta(\mathbf{x};t_n,\mathbf{y}_n)$. For $m=1$ (the two-dimensionalcase), we can apply the known properties of the delta function tosimplify formula (\ref{eq:pumig}) further to the form\begin{equation}  W  = {\frac{v}{\pi}}\,  {\left|\frac{\partial}{\partial t}\right|^{1/2}    \left|\frac{\partial}{\partial t_n}\right|^{1/2}    \frac{\sqrt{t\,t_n}}{\sqrt{	\left[(\mathbf{y}-\mathbf{y}_n)^2 - v^2 (t - t_n)^2\right]	\left[v^2 (t + t_n)^2 - (\mathbf{y}-\mathbf{y}_n)^2\right]  }}}\;.  \label{eq:2dmig}\end{equation}The result is an interpolant for zero-offset seismic sections.  Likethe sinc interpolant in equation~(\ref{eq:w-cft}), which is based ondecomposing the signal into sinusoids, equation~(\ref{eq:2dmig}) isbased on decomposing the zero-offset section into hyperbolas. While opening a curious theoretical possibility, seismic imaginginterpolants have an undesirable computational complexity. Followingthe general regularization framework of Chapter~\ref{chapter:funda}, Ishift the computational emphasis towards appropriately chosenregularization operators discussed in Chapter~\ref{chapter:regul}.For the forward interpolation method, all data examples in thisdissertation use either the simplest nearest neighbor and linearinterpolation or a more accurate B-spline method, described in thenext section.\section{Interpolation with convolutional bases}\cite{unser1} noticed that the basis function idea has anespecially simple implementation if the basis is convolutional andsatisfies the equation\begin{equation}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -