📄 ofcon.tex
字号:
\append{Second-order reflection traveltime derivatives}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\label{chapter:deriv}This appendix contains a derivation of equations connectingsecond-order partial derivatives of the reflection traveltime with thegeometric properties of the reflector in a constant velocity medium.These equations are used in the main text of this paper to describethe amplitude behavior of offset continuation. Let $\tau(s,r)$ be thereflection traveltime from the source $s$ to the receiver $r$.Consider a formal equality\begin{equation}\tau(s,r)=\tau_1\left(s,x(s,r)\right)+\tau_2\left(x(s,r),r\right)\;, \label{eqn:t1pt2} \end{equation}where $x$ is the reflection point parameter, $\tau_1$ corresponds to theincident ray, and $\tau_2$ corresponds to the reflected ray.Differentiating (\ref{eqn:t1pt2}) with respect to $s$ and $r$ yields\begin{eqnarray}{\partial \tau \over \partial s} & = & {\partial \tau_1 \over \partial s} + {\partial \tau \over \partial x}\,{\partial x \over \partial s}\;,\label{eqn:dt1ds} \\{\partial \tau \over \partial r} & = & {\partial \tau_2 \over \partial r} + {\partial \tau \over \partial x}\,{\partial x \over \partial r}\;.\label{eqn:dt2dr} \end{eqnarray}According to Fermat's principle, the two-point reflection ray path mustcorrespond to the traveltime stationary point. Therefore \begin{equation}{\partial \tau \over \partial x} \equiv 0 \label{eqn:fermat} \end{equation}for any $s$ and $r$. Taking into account (\ref{eqn:fermat}) whiledifferentiating (\ref{eqn:dt1ds}) and (\ref{eqn:dt2dr}), we get\begin{eqnarray}{\partial^2 \tau \over \partial s^2} & = & {\partial^2 \tau_1 \over \partial s^2} + B_1\,{\partial x \over \partial s}\;,\label{eqn:d2tds2} \\{\partial^2 \tau \over \partial r^2} & = & {\partial^2 \tau_2 \over \partial r^2} + B_2\,{\partial x \over \partial r}\;,\label{eqn:d2tdr2} \\{\partial^2 \tau \over \partial s \partial r} & = & B_1\,{\partial x \over \partial r}\;=B_2\,{\partial x \over \partial s}\;,\label{eqn:d2tdsdr}\end{eqnarray}where\[B_1={\partial^2 \tau_1 \over \partial s \partial x}\;;\;B_2={\partial^2 \tau_2 \over \partial r \partial x}\;.\]Differentiating equation~(\ref{eqn:fermat}) gives us the additionalpair of equations\begin{eqnarray}C\,{\partial x \over \partial s}+B_1 & = & 0\;,\label{eqn:b12c} \\C\,{\partial x \over \partial r}+B_2 & = & 0\;,\label{eqn:b22c}\end{eqnarray}where\[C={\partial^2 \tau \over \partial x^2}={\partial^2 \tau_1 \over \partial x^2}+{\partial^2 \tau_2 \over \partial x^2}\;.\]Solving the system (\ref{eqn:b12c}) - (\ref{eqn:b22c}) for $\partial x\over \partial s$ and $\partial x \over \partial r$ and substitutingthe result into (\ref{eqn:d2tds2}) - (\ref{eqn:d2tdsdr}) produces thefollowing set of expressions:\begin{eqnarray}{\partial^2 \tau \over \partial s^2} & = & {\partial^2 \tau_1 \over \partial s^2} -C^{-1}\,B_1^2\;;\label{eqn:cs2} \\{\partial^2 \tau \over \partial r^2} & = & {\partial^2 \tau_2 \over \partial r^2} -C^{-1}\,B_2^2\;;\label{eqn:cr2} \\{\partial^2 \tau \over \partial s \partial r} & = & - C^{-1}\,B_1\,B_2\;.\label{eqn:csr}\end{eqnarray}In the case of a constant velocity medium, expressions (\ref{eqn:cs2}) to(\ref{eqn:csr}) can be applied directly to the explicitequation for the two-point eikonal \begin{equation}\tau_1(y,x)=\tau_2(x,y)={\sqrt{(x-y)^2+z^2(x)}\over v}\;.\label{eqn:twopoint}\end{equation}Differentiating (\ref{eqn:twopoint}) and taking into account the trigonometricrelationships for the incident and reflected rays (Figure\ref{fig:ocoray}), one can evaluate all the quantities in (\ref{eqn:cs2}) to (\ref{eqn:csr}) explicitly.After some heavy algebra, the resultant expressions for the traveltime derivatives take the form \begin{eqnarray}{\partial \tau \over \partial s} = {\partial \tau_1 \over \partial s} ={\sin{\alpha_1}\over v}& \;;\; &{\partial \tau \over \partial r} ={\partial \tau_2 \over \partial r} ={\sin{\alpha_2}\over v}\;;\label{eqn:tstr} \\{\partial \tau_1 \over \partial x} = {\sin{\gamma}\over v \cos{\alpha}} & \;;\; &{\partial \tau_2 \over \partial x} =- {\sin{\gamma}\over v \cos{\alpha}}\;;\label{eqn:txx}\end{eqnarray}\begin{eqnarray}B_1 & = & {\partial^2 \tau_1 \over \partial s\,\partial x} ={\cos{\alpha_1}\over{v\,D\,\cos{\alpha}}}\,\left(-1-{\sin{\gamma}\over\cos{\alpha}}\,\sin{\alpha_1}\right)\;;\label{eqn:B1} \\ B_2 & = &{\partial^2 \tau_2 \over \partial r\,\partial x} ={\cos{\alpha_2}\over{v\,D\,\cos{\alpha}}}\,\left(-1+{\sin{\gamma}\over\cos{\alpha}}\,\sin{\alpha_2}\right)\;;\label{eqn:B2} \end{eqnarray}\begin{equation}B_1\,B_2 = {\cos^6{\gamma}\over v^2\,D^2\,a^4}\;;\;B_1+B_2 = -2\,{\cos^3{\gamma}\over v\,D\,a^2}\,\left(2\,a^2-1\right)\;;\label{eqn:B1B2}\end{equation}\begin{equation}{\partial^2 \tau_1 \over \partial x^2} ={{\cos^2{\gamma}+D\,K}\over{v\,D\,\cos^3{\alpha}}}\,\cos{\alpha_1}\;;\;{\partial^2 \tau_2 \over \partial x^2} ={{\cos^2{\gamma}+D\,K}\over{v\,D\,\cos^3{\alpha}}}\,\cos{\alpha_2}\;;\label{eqn:C1C2} \end{equation}\begin{equation}C={\partial^2 \tau_1 \over \partial x^2}+{\partial^2 \tau_2 \over \partial x^2}=2\,\cos{\gamma}\,{{\cos^2{\gamma}+D\,K}\over{v\,D\,\cos^3{\alpha}}}\;.\label{eqn:C}\end{equation}Here $D$ is the length of the normal (central) ray, $\alpha$ is its dip angle($\alpha={{\alpha_1+\alpha_2}\over 2}$, $\tan{\alpha}=z'(x)$),$\gamma$ is the reflection angle $\left(\gamma={{\alpha_2-\alpha_1}\over 2}\right)$, $K$ is the reflector curvature at the reflection point $\left(K=z''(x)\,\cos^3{\alpha}\right)$, and $a$ is the dimensionless function of $\alpha$ and $\gamma$ defined in (\ref{eqn:A}).The equations derived in this appendix were used to obtain the equation\begin{equation}\tau_n\,\left({\partial^2 \tau_n \over \partial y^2}-{\partial^2 \tau_n \over \partial h^2}\right)=4\,\left(\tau\,{\partial^2 \tau \over \partial s\,\partial r}+{\cos^2{\gamma}\over v^2}\right)=4\,{\cos^2{\gamma}\over v^2}\,\left({\sin^2{\alpha}+DK}\over{\cos^2{\gamma}+DK}\right)\;,\label{eqn:curved}\end{equation}which coincides with (\ref{eqn:curve}) in the main text.\append{The kinematics of offset continuation}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\label{chapter:kinem}This Appendix presents an alternative method to derive equation(\ref{eqn:summation}), which describes the summation path of theintegral offset continuation operator. The method is based on thefollowing considerations.The summation path of an integral (stacking) operator coincides withthe phase function of the impulse response of the inverse operator.Impulse response is by definition the operator reaction to an impulsein the input data. For the case of offset continuation, the input is areflection common-offset gather. From the physical point of view, animpulse in this type of data corresponds to the special focusingreflector (elliptical isochrone) at the depth. Therefore, reflectionfrom this reflector at a different constant offset corresponds to theimpulse response of the OC operator. In other words, we can viewoffset continuation as the result of cascading prestack common-offsetmigration, which produces the elliptic surface, and common-offsetmodeling (inverse migration) for different offsets. This approachresemble that of \cite{GPR29-03-03740406}. It was also applied to amore general case of azimuth moveout (AMO) by\cite{SEG-1995-1449} and fully generalized by \cite{GPR48-01-01350162}. The geometric approach implies thatin order to find the summation pass of the OC operator, one shouldsolve the kinematic problem of reflection from an elliptic reflectorwhose focuses are in the shot and receiver locations of the outputseismic gather.In order to solve this problem , let us consider an elliptic surface ofthe general form\begin{equation}h(x)=\sqrt{d^2-\beta\,(x-x')^2}\;,\label{eqn:ellips}\end{equation}where $0 < \beta < 1$. In a constant velocity medium, the reflectionray path for a given source-receiver pair on the surface is controlledby the position of the reflection point $x$. Fermat's principleprovides a required constraint for finding this position. According toFermat's principle, the reflection ray path corresponds to astationary value of the travel-time. Therefore, in the neighborhood ofthis path,\begin{equation}{\partial \tau(s,r,x) \over \partial x} = 0\;,\label{eqn:fermat1}\end{equation}where $s$ and $r$ stand for the source and receiver locations on thesurface, and $\tau$ is the reflection traveltime\begin{equation}\tau(s,r,x) = { \sqrt{h^2(x)+(s-x)^2} \over v} + { \sqrt{h^2(x)+(r-x)^2} \over v}\;.\label{eqn:length1}\end{equation}Substituting equations~(\ref{eqn:length1}) and (\ref{eqn:ellips}) into(\ref{eqn:fermat1}) leads to a quadratic algebraic equation on thereflection point parameter $x$. This equation has the explicitsolution\begin{equation}x(s,r)= x' + {{\xi^2+H^2-h^2+\mbox{sign}(h^2-H^2)\,\sqrt{\left(\xi^2-H^2-h^2\right)^2-4\,H^2\,h^2}\over{2\,\xi\,(1-\beta)}}}\;,\label{eqn:reflection}\end{equation}where $h=(r-s)/2$, $\xi = y-x'$, $y=(s+r)/2$, and $H^2=d^2\,\left({1 \over \beta} - 1\right)$. Replacing $x$ in equation(\ref{eqn:length1}) with its expression (\ref{eqn:reflection}) solvesthe kinematic part of the problem, producing the explicit traveltimeexpression\begin{equation}\tau(s,r)=\left\{ \begin{array}{lcr}\displaystyle{{1 \over v} \sqrt{{4\,h^2-\beta\,(f+g)^2} \over {1-\beta}}}& \mbox{for} & h^2 > H^2 \\ & & \\ \displaystyle{{1 \over v} \sqrt{{4\,h^2+\beta\,(F+G)^2} \over {1-\beta}}}& \mbox{for} & h^2 < H^2 \end{array} \right.\;, \label{eqn:tau}\end{equation} where \begin{eqnarray}f=\sqrt{(r-x')^2-H^2}\; & , & \;g=\sqrt{(s-x')^2-H^2}\;,\nonumber \\F=\sqrt{H^2-(r-x')^2}\; & , & \;G=\sqrt{H^2-(s-x')^2}\;.\nonumber\end{eqnarray}The two branches of equation~(\ref{eqn:tau}) correspond to thedifference in the geometry of the reflected rays in two differentsituations. When a source-and-receiver pair is inside the focuses ofthe elliptic reflector, the midpoint $y$ and the reflection point $x$are on the same side of the ellipse with respect to its smallsemi-axis. They are on different sides in the opposite case (Figure\ref{fig:ell}).\inputdir{Math}\sideplot{ell}{height=1.in}{.}{Reflections from an ellipse. The three pairs of reflected rayscorrespond to a common midpoint (at 0.1) and different offsets. Thefocuses of the ellipse are at 1 and -1.} If we apply the NMO correction, equation (\ref{eqn:tau}) is transformed to\begin{equation}\tau_n(s,r)=\left\{ \begin{array}{lcr}\displaystyle{{1 \over v} \sqrt{\beta \over {1-\beta}}\,\sqrt{4\,h^2-(f+g)^2}}& \mbox{for} & h^2 > H^2 \\ & & \\ \displaystyle{{1 \over v} \sqrt{\beta \over {1-\beta}}\,\sqrt{4\,h^2+(F+G)^2}}& \mbox{for} & h^2 < H^2 \end{array} \right.\;. \label{eqn:taun}\end{equation}Then, recalling the relationships between the parameters of thefocusing ellipse $r$, $x'$ and $\beta$ and the parameters of theoutput seismic gather \cite[]{GPR29-03-03740406}\begin{equation}r={ {v\,t_n} \over 2}\;,\;x'=y\;,\;\beta={t_n^2 \over {t_n^2+{{4\,h^2} \over v^2}}}\;,\;H=h\;,\label{eqn:ell2}\end{equation}and substituting expressions (\ref{eqn:ell2}) into equation (\ref{eqn:taun}) yields theexpression\begin{equation}t_1(s_1,r_1;s,r,t_n)=\left\{ \begin{array}{lcr}\displaystyle{{t_n \over {2\,h}}\,\sqrt{4\,h_1^2-(f+g)^2}}& \mbox{for} & h_1^2 > h^2 \\ & & \\ \displaystyle{{t_2 \over {2\,h}}\,\sqrt{4\,h_1^2+(F+G)^2}}& \mbox{for} & h_1^2 < h^2 \end{array} \right.\;, \label{eqn:final}\end{equation}where \begin{eqnarray}f=\sqrt{(r_1-r)\,(r_1-s)}\;,\;g=\sqrt{(s_1-r)\,(s_1-s)}\;,\nonumber \\F=\sqrt{(r-r_1)\,(r_1-s)}\;,\;G=\sqrt{(s_1-r)\,(s-s_1)}\;.\nonumber\end{eqnarray}It is easy to verify algebraically the mathematical equivalence ofequation (\ref{eqn:final}) and equation (\ref{eqn:summation}) in themain text. The kinematic approach described in this appendix appliesequally well to different acquisition configurations of the input andoutput data. The source-receiver parameterization used in(\ref{eqn:final}) is the actual definition for the summation path ofthe integral shot continuation operator\cite[]{SEG-1993-0673,GEO61-06-18461858}. A family of these summationcurves is shown in Figure \ref{fig:shc}.\plot{shc}{width=6in,height=3in}{.}{Summation paths of the integral shot continuation. The output sourceis at -0.5 km. The output receiver is at 0.5 km. The indexes of thecurves correspond to the input source location.}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -