📄 ococrv.ma
字号:
ymax[x_, h_] := (-1 + x^2 + Sqrt[1 + (2 + 4 h^2) x^2 + x^4])/(2 x);ray[y_, x_] := Sqrt[1 + x y];fro[y_, h_] := Sqrt[1/2 (y^2 + 1 - h^2 + Sqrt[(y^2 + 1 - h^2)^2 + 4 h^2])];plotfro[h_] := Plot[-fro[y, h], {y, -ymax[5.1, h], ymax[5.1, h]}, PlotStyle -> {Thickness[0.01]}, DisplayFunction -> Identity];fronts = Show[plotfro[0], plotfro[1], plotfro[2], plotfro[3], plotfro[4], plotfro[5]];plotray[x_] := Plot[-ray[y, x], {y, -1/x, ymax[x, 5]}, PlotStyle -> {Dashing[{0.02}]}];plot1 = Show[plotray[1], plotray[2], plotray[3], plotray[4], plotray[5], plotray[-1], plotray[-2], plotray[-3], plotray[-4], plotray[-5], fronts, AspectRatio -> 1, PlotRange->{-7,0}, Frame->True, FrameLabel -> {"midpoint", None}, PlotLabel->"Diffraction Point",FrameTicks->{Automatic, {{-1,"1"},{-2,"2"},{-3,"3"},{-4,"4"},{-5,"5"},{-6,"6"}}, None,None}]; ray[y_, x_] := Sqrt[1 - x y];plotray1[x_] := Plot[-ray[y, x], {y, -1, 1/x}, PlotStyle -> {Dashing[{0.02}]}]; plotray2[x_] := Plot[-ray[y, x], {y, 1/x, 1}, PlotStyle -> {Dashing[{0.02}]}];fro1[y_, h_] := Sqrt[1/2 (1 + h^2 - y^2 + Sqrt[-4 h^2 + (-1 - h^2 + y^2)^2])];fro2[y_, h_] := Sqrt[1/2 (1 + h^2 - y^2 - Sqrt[-4 h^2 + (-1 - h^2 + y^2)^2])];plotfro1[h_] := Plot[-fro1[y, h], {y, - (1 - h), 1 - h}, PlotStyle -> {Thickness[0.01]}, DisplayFunction -> Identity];fronts1 = Show[plotfro1[0.8], plotfro1[0.6], plotfro1[0.4], plotfro1[0.2]];plotfro2[h_] := Plot[-fro2[y, h], {y, - (h - 1), h - 1}, PlotStyle -> {Thickness[0.01]}, DisplayFunction -> Identity];fronts2 = Show[plotfro2[1.2], plotfro2[1.4], plotfro2[1.6], plotfro2[1.8]];plot2 = Show[plotray1[1], plotray1[0.4], plotray1[0.6], plotray1[0.8], plotray2[-1], plotray2[-0.4], plotray2[-0.6], plotray2[-0.8], fronts1, fronts2, Frame->True, PlotLabel->"Elliptic Reflector", FrameLabel -> {"midpoint", None}, PlotRange -> {{-1.1, 1.1}, {-1.4,0}}, FrameTicks -> {{-1,-0.5,0,0.5,1}, {{-0.2,"0.2"},{-0.4,"0.4"},{-0.6,"0.6"}, {-0.8,"0.8"},{-1,"1.0"},{-1.2,"1.2"}}, None,None}, AspectRatio -> 1];Show[GraphicsArray[{plot1, plot2}], AspectRatio -> 1/2];Display["junk_ma.eps", %, "EPS", ImageSize -> 432];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -