⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 matrixbaseoperators.hpp

📁 一个gps小工具包
💻 HPP
字号:
#pragma ident "$Id: MatrixBaseOperators.hpp 70 2006-08-01 18:36:21Z ehagen $"/** * @file MatrixBaseOperators.hpp * Matrix operators for the base class */ #ifndef GPSTK_MATRIX_BASE_OPERATORS_HPP#define GPSTK_MATRIX_BASE_OPERATORS_HPP//============================================================================////  This file is part of GPSTk, the GPS Toolkit.////  The GPSTk is free software; you can redistribute it and/or modify//  it under the terms of the GNU Lesser General Public License as published//  by the Free Software Foundation; either version 2.1 of the License, or//  any later version.////  The GPSTk is distributed in the hope that it will be useful,//  but WITHOUT ANY WARRANTY; without even the implied warranty of//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the//  GNU Lesser General Public License for more details.////  You should have received a copy of the GNU Lesser General Public//  License along with GPSTk; if not, write to the Free Software Foundation,//  Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA//  //  Copyright 2004, The University of Texas at Austin////============================================================================#include <fstream> // for copyfmt#include <iomanip>namespace gpstk{ /** @addtogroup VectorGroup */   //@{ /// Output operator for ConstMatrixBase classes   template <class T, class E>   std::ostream& operator<<(std::ostream& s, const ConstMatrixBase<T, E>& a)    {      size_t i, j;      std::ofstream savefmt;      savefmt.copyfmt(s);      for (i=0; i<a.rows(); i++)      {         for (j=0; j< a.cols(); j++) {            s << std::setw(1) << ' ';            s.copyfmt(savefmt);            s << a(i,j);         }         if(i < a.rows()-1) s << std::endl;      }      return s;   }/** * Turns the square RefMatrixBase matrix into an identity matrix */   template <class T, class BaseClass>   BaseClass& ident(RefMatrixBase<T, BaseClass>& m)      throw (MatrixException)   {      BaseClass& me = static_cast<BaseClass&>(m);      if ( (me.rows() != me.cols()) || (me.cols() < 1) )      {         MatrixException e("invalid matrix dimensions for ident()");         GPSTK_THROW(e);      }      m.assignFrom(T(0));      size_t i;      for (i = 0; i < me.rows(); i++)         me(i,i) = T(1);      return me;   }/** * Returns the trace of the matrix */   template <class T, class BaseClass>   inline T trace(const ConstMatrixBase<T, BaseClass>& m)      throw (MatrixException)   {      if ((!m.isSquare()) || (m.rows() == 0))      {         MatrixException e("Invalid matrix for trace()");         GPSTK_THROW(e);      }      size_t index = 0;      T answer = m(index,index);      for (index = 1; index < m.rows(); index++)         answer += m(index,index);      return answer;   }/** * returns the frobenius norm or RSS of the matrix */   template <class T, class BaseClass>   inline T normF(const ConstMatrixBase<T, BaseClass>& m)   {      T sum(0);      size_t i,j;      for (i = 0; i < m.rows(); i++)         for (j = 0; j < m.cols(); j++)            sum += m(i,j) * m(i,j);      return SQRT(sum);   }/** * returns the column sum norm of the matrix */   template <class T, class BaseClass>   inline T normCol(const ConstMatrixBase<T, BaseClass>& m)   {      T sum(0), tempSum;      size_t i,j;      for (i = 0; i < m.rows(); i++)      {         tempSum = T(0);         for (j = 0; j < m.cols(); j++)            tempSum += ABS(m(i,j));         if (tempSum > sum)            sum = tempSum;      }      return sum;   }/** * Uses the sum of minor determinates to calculate the whole det.  * Slow for large matricies, but it works. */   template <class T, class BaseClass>   inline T slowDet(const ConstMatrixBase<T, BaseClass>& l)   {      if (!l.isSquare() || (l.rows() <= 1))      {         MatrixException e("Invalid matrix for det()");         GPSTK_THROW(e);      }         // go recursion!      if (l.rows() == 2)         return l(0,0)*l(1,1) - l(0,1)*l(1,0);      else      {            // use v[0,0] * det(minor matrix(0,0)) +             //     v[0,1] * det(minor matrix(0,1)) + ...         size_t i;         int sign;         T det = 0;         for (i = 0; i < l.rows(); i++)         {            sign = (i % 2) ? -1 : 1;            if (l(0,i) != 0)               det += sign * l(0,i) * slowDet(minorMatrix(l,0,i));         }         return det;      }   }   //@} }  // namespace#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -