⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 vectorbaseoperators.hpp

📁 一个gps小工具包
💻 HPP
字号:
#pragma ident "$Id: VectorBaseOperators.hpp 70 2006-08-01 18:36:21Z ehagen $"/** * @file VectorBaseOperators.hpp * Vector base class operators, including I/O, min(), dot(), comparisons, etc */#ifndef GPSTK_VECTOR_BASE_OPERATORS_HPP#define GPSTK_VECTOR_BASE_OPERATORS_HPP//============================================================================////  This file is part of GPSTk, the GPS Toolkit.////  The GPSTk is free software; you can redistribute it and/or modify//  it under the terms of the GNU Lesser General Public License as published//  by the Free Software Foundation; either version 2.1 of the License, or//  any later version.////  The GPSTk is distributed in the hope that it will be useful,//  but WITHOUT ANY WARRANTY; without even the implied warranty of//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the//  GNU Lesser General Public License for more details.////  You should have received a copy of the GNU Lesser General Public//  License along with GPSTk; if not, write to the Free Software Foundation,//  Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA//  //  Copyright 2004, The University of Texas at Austin////============================================================================#include <fstream> // for copyfmt#include <vector>#include <iomanip>namespace gpstk{ /** @addtogroup VectorGroup */ //@{ /** Output operator for ConstVectorBase objects */   template <class T, class E>   std::ostream& operator<<(std::ostream& s, const ConstVectorBase<T, E>& a)    {      std::ofstream savefmt;      savefmt.copyfmt(s);      size_t i;      for (i=0; i< a.size(); i++) {         s << std::setw(1) << ' ';         s.copyfmt(savefmt);         s << a[i];      }      return s;   }/** Returns the sum of the elements of the vector */   template <class T, class BaseClass>   inline T sum(const ConstVectorBase<T, BaseClass>& l)   {       T total(0);      size_t i;      for (i = 0; i < l.size(); i++)         total += l[i];      return total;   }/** Return the element with smallest absolute value in the vector */   template <class T, class BaseClass>   inline T minabs(const ConstVectorBase<T, BaseClass>& l) throw (VectorException)   {       if (l.size() == 0)      {         VectorException e("Can't find the minabs of an empty vector");         GPSTK_THROW(e);      }      T min = l[0];      size_t i;      for (i = 1; i < l.size(); i++)         if (ABS(l[i]) < ABS(min))             min = l[i];      return min;   }/** Returns the smallest element of the vector */   template <class T, class BaseClass>   inline T min(const ConstVectorBase<T, BaseClass>& l) throw (VectorException)   {       if (l.size() == 0)      {         VectorException e("Can't find the min of an empty vector");         GPSTK_THROW(e);      }      T min = l[0];      size_t i;      for (i = 1; i < l.size(); i++)         if (l[i] < min)             min = l[i];      return min;   }/** Return the element with largest absolute value in the vector */   template <class T, class BaseClass>   inline T maxabs(const ConstVectorBase<T, BaseClass>& l)   {      if (l.size() == 0)      {         VectorException e("Can't find the maxabs of an empty vector");         GPSTK_THROW(e);      }      T max = l[0];      size_t i;      for (i = 1; i < l.size(); i++)         if (ABS(l[i]) > ABS(max))             max = l[i];      return max;   }/** Returns the largest element of the vector */   template <class T, class BaseClass>   inline T max(const ConstVectorBase<T, BaseClass>& l)   {      if (l.size() == 0)      {         VectorException e("Can't find the max of an empty vector");         GPSTK_THROW(e);      }      T max = l[0];      size_t i;      for (i = 1; i < l.size(); i++)         if (l[i] > max)             max = l[i];      return max;   }/** returns the dot product of the two vectors */   template <class T, class BaseClass, class BaseClass2>    inline T dot(const ConstVectorBase<T, BaseClass>& l,          const ConstVectorBase<T, BaseClass2>& r)    {      T sum(0);      size_t i,n=(l.size() > r.size() ? r.size() : l.size());      for (i = 0; i < n; i++)      {         sum += l[i] * r[i];      }      return sum;   } /** returns the dot product of a vector and a scalar */   template <class T, class BaseClass>    inline T dot(const ConstVectorBase<T, BaseClass>& l, const T r)    {      T sum(0);      size_t i;      for (i = 0; i < l.size(); i++)      {         sum += l[i] * r;      }      return sum;   }/** returns the dot product of a scalar and a vector */   template <class T, class BaseClass>    inline T dot(const T l, const ConstVectorBase<T, BaseClass>& r)    {      T sum(0);      size_t i;      for (i = 0; i < r.size(); i++)      {         sum += l * r[i];      }      return sum;   }/** returns the norm of the vector */   template <class T, class BaseClass>    inline T norm(const ConstVectorBase<T, BaseClass>& v)    {      T mag=T(0);      if(v.size()==0) return mag;      mag = ABS(v(0));      for(size_t i=1; i<v.size(); i++) {         if(mag > ABS(v(i)))            mag *= SQRT(T(1)+(v(i)/mag)*(v(i)/mag));         else if(ABS(v(i)) > mag)            mag = ABS(v(i))*SQRT(T(1)+(mag/v(i))*(mag/v(i)));         else            mag *= SQRT(T(2));      }      return mag;   } /** return the Minkowski product of two vectors of length 4. */   template <class T, class BaseClass, class BaseClass2>    inline T Minkowski(const ConstVectorBase<T, BaseClass>& v,          const ConstVectorBase<T, BaseClass2>& w)    {      if (v.size()<4 || w.size()<4)      {         VectorException e("Minkowski requires vector length 4");         GPSTK_THROW(e);      }      return (v(0)*w(0)+v(1)*w(1)+v(2)*w(2)-v(3)*w(3));   }/** finds the cosine between the two vectors */   template <class T, class BaseClass1, class BaseClass2>   inline T cosVec(const ConstVectorBase<T, BaseClass1>& a,                const ConstVectorBase<T, BaseClass2>& b)   {      T na=norm(a), nb=norm(b), c(0);      size_t i,n=(b.size() > a.size() ? a.size() : b.size());      for(i=0; i<n; i++) c += (a(i)/na)*(b(i)/nb);      return c;   }// shortwire equality operators - compares each individual// element in the vector but returns one 'true' or 'false'// for the whole comparison.  note this only compares// the smaller of the size of the two vectors#define VecShortwireComparisonOperator(func, op) \/** Performs op on each element of l and r, returning false if any fail */ \template <class T, class BaseClass, class BaseClass2>  \inline bool func(const ConstVectorBase<T, BaseClass>& l,  \       const ConstVectorBase<T, BaseClass2>& r)  \{  \   size_t len = (l.size() < r.size()) ? l.size() : r.size(); \   size_t i; \   for(i = 0; i < len; i++) \      if ( !(l[i] op r[i]) ) \         return false; \   return true; \}  \/** Performs op on each element of l to r, returning false if any fail */ \template <class T, class BaseClass>  \inline bool func(const ConstVectorBase<T, BaseClass>& l, const T r)  \{ \   size_t len = l.size(); \   size_t i; \   for(i = 0; i < len; i++) \      if ( !(l[i] op r) ) \         return false; \   return true; \} \/** Performs op on each element of r to l, returning false if any fail */ \template <class T, class BaseClass>  \inline bool func(const T l, const ConstVectorBase<T, BaseClass>& r)  \{  \   size_t len = r.size(); \   size_t i; \   for(i = 0; i < len; i++) \      if ( !(l op r[i]) ) \         return false; \   return true; \}VecShortwireComparisonOperator(eq, ==)   VecShortwireComparisonOperator(ne, !=)   VecShortwireComparisonOperator(lt, <)   VecShortwireComparisonOperator(gt, >)   VecShortwireComparisonOperator(ge, >=)   VecShortwireComparisonOperator(le, <=) //@}}  // namespace gpstk #endif // GPSTK_VECTOR_BASE_OPERATORS_HPP

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -