📄 solverlms.hpp
字号:
#pragma ident "$Id: $"/** * @file SolverLMS.hpp * Class to compute the Least Mean Squares Solution */#ifndef SOLVERLMS_HPP#define SOLVERLMS_HPP//============================================================================//// This file is part of GPSTk, the GPS Toolkit.//// The GPSTk is free software; you can redistribute it and/or modify// it under the terms of the GNU Lesser General Public License as published// by the Free Software Foundation; either version 2.1 of the License, or// any later version.//// The GPSTk is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the// GNU Lesser General Public License for more details.//// You should have received a copy of the GNU Lesser General Public// License along with GPSTk; if not, write to the Free Software Foundation,// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA// // Dagoberto Salazar - gAGE ( http://www.gage.es ). 2006, 2007////============================================================================#include "SolverBase.hpp"#include "TypeID.hpp"#include "ProcessingClass.hpp"namespace gpstk{ /** @addtogroup GPSsolutions */ /// @ingroup math //@{ /** This class computes the Least Mean Squares Solution of a given * equations set. * * This class may be used either in a Vector- and Matrix-oriented way, * or with GNSS data structure objects from "DataStructures" class. * * A typical way to use this class with GNSS data structures follows: * * @code * RinexObsStream rin("ebre0300.02o"); // Data stream * * // More declarations here: Ionospheric and tropospheric models, * // ephemeris, etc. * * // Declare the modeler object, setting all the parameters in * // one pass * ModelObs model(ionoStore, mopsTM, bceStore, TypeID::C1); * model.Prepare(); // Set initial position (Bancroft method) * * // Declare a SolverLMS object * SolverLMS solver; * * gnssRinex gRin; * * while(rin >> gRin) { * gRin >> model >> solver; * } * @endcode * * The "SolverLMS" object will extract all the data it needs from the * GNSS data structure that is "gRin" and will try to solve the system * of equations using the Least-Mean-Squares method. It will also insert * back postfit residual data into "gRin" if it successfully solves the * equation system. * * By default, it will build the geometry matrix from the values of * coefficients dx, dy, dz and cdt, and the independent vector will be * composed of the code prefit residuals (TypeID::prefitC) values. * * You may change the former by redefining the default equation * definition to be used. For instance: * * @code * TypeIDSet unknownsSet; * unknownsSet.insert(TypeID::dLat); * unknownsSet.insert(TypeID::dLon); * unknownsSet.insert(TypeID::dH); * unknownsSet.insert(TypeID::cdt); * * // Create a new equation definition * // newEq(independent value, set of unknowns) * gnssEquationDefinition newEq(TypeID::prefitC, unknownsSet); * * // Reconfigure solver * solver.setDefaultEqDefinition(newEq); * @endcode * * @sa SolverBase.hpp for base class. * */ class SolverLMS : public SolverBase, public ProcessingClass { public: /** Default constructor. When fed with GNSS data structures, the * default the equation definition to be used is the common GNSS * code equation. */ SolverLMS(); /** Explicit constructor. Sets the default equation definition * to be used when fed with GNSS data structures. * * @param eqDef gnssEquationDefinition to be used */ SolverLMS(const gnssEquationDefinition& eqDef) : defaultEqDef(eqDef) { setIndex(); }; /** Compute the Least Mean Squares Solution of the given * equations set. * @param prefitResiduals Vector of prefit residuals * @param designMatrix Design matrix for the equation system * * @return * 0 if OK * -1 if problems arose */ virtual int Compute(const Vector<double>& prefitResiduals, const Matrix<double>& designMatrix) throw(InvalidSolver); /** Returns a reference to a satTypeValueMap object after * solving the previously defined equation system. * * @param gData Data object holding the data. */ virtual satTypeValueMap& Process(satTypeValueMap& gData) throw(InvalidSolver); /** Returns a reference to a gnnsSatTypeValue object after * solving the previously defined equation system. * * @param gData Data object holding the data. */ virtual gnssSatTypeValue& Process(gnssSatTypeValue& gData) throw(InvalidSolver) { Process(gData.body); return gData; }; /** Returns a reference to a gnnsRinex object after solving * the previously defined equation system. * * @param gData Data object holding the data. */ virtual gnssRinex& Process(gnssRinex& gData) throw(InvalidSolver) { Process(gData.body); return gData; }; /** Method to set the default equation definition to be used * when fed with GNSS data structures. * @param eqDef gnssEquationDefinition to be used by default */ virtual SolverLMS& setDefaultEqDefinition( const gnssEquationDefinition& eqDef) { defaultEqDef = eqDef; return (*this); }; /** Method to get the default equation definition being used * with GNSS data structures. */ virtual gnssEquationDefinition getDefaultEqDefinition() const { return defaultEqDef; }; /// Returns an index identifying this object. virtual int getIndex(void) const; /// Returns a string identifying this object. virtual std::string getClassName(void) const; /** Sets the index to a given arbitrary value. Use with caution. * * @param newindex New integer index to be assigned to * current object. */ SolverLMS& setIndex(const int newindex) { index = newindex; return (*this); }; /// Destructor. virtual ~SolverLMS() {}; protected: /** Default equation definition to be used when fed with * GNSS data structures. */ gnssEquationDefinition defaultEqDef; private: /// Initial index assigned to this class. static int classIndex; /// Index belonging to this object. int index; /// Sets the index and increment classIndex. void setIndex(void) { index = classIndex++; }; }; // class SolverLMS //@}} // namespace#endif // SOLVERLMS_HPP
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -