📄 vector.h
字号:
#ifndef __VECTOR_H
#define __VECTOR_H
#include <math.h>
/*
VECTOR.H
CVector class
OpenGL Game Programming
by Kevin Hawkins and Dave Astle
Some operators of the CVector class based on
operators of the CVector class by Bas Kuenen.
Copyright (c) 2000 Bas Kuenen. All Rights Reserved.
homepage: baskuenen.cfxweb.net
*/
#define PI (3.14159265359f)
#define DEG2RAD(a) (PI/180*(a))
#define RAD2DEG(a) (180/PI*(a))
typedef float scalar_t;
class CVector
{
public:
union
{
struct
{
scalar_t x;
scalar_t y;
scalar_t z; // x,y,z coordinates
};
scalar_t v[3];
};
public:
CVector(scalar_t a = 0, scalar_t b = 0, scalar_t c = 0) : x(a), y(b), z(c) {}
CVector(const CVector &vec) : x(vec.x), y(vec.y), z(vec.z) {}
// vector index
scalar_t &operator[](const long idx)
{
return *((&x)+idx);
}
// vector assignment
const CVector &operator=(const CVector &vec)
{
x = vec.x;
y = vec.y;
z = vec.z;
return *this;
}
// vecector equality
const bool operator==(const CVector &vec) const
{
return ((x == vec.x) && (y == vec.y) && (z == vec.z));
}
// vecector inequality
const bool operator!=(const CVector &vec) const
{
return !(*this == vec);
}
// vector add
const CVector operator+(const CVector &vec) const
{
return CVector(x + vec.x, y + vec.y, z + vec.z);
}
// vector add (opposite of negation)
const CVector operator+() const
{
return CVector(*this);
}
// vector increment
const CVector& operator+=(const CVector& vec)
{ x += vec.x;
y += vec.y;
z += vec.z;
return *this;
}
// vector subtraction
const CVector operator-(const CVector& vec) const
{
return CVector(x - vec.x, y - vec.y, z - vec.z);
}
// vector negation
const CVector operator-() const
{
return CVector(-x, -y, -z);
}
// vector decrement
const CVector &operator-=(const CVector& vec)
{
x -= vec.x;
y -= vec.y;
z -= vec.z;
return *this;
}
// scalar self-multiply
const CVector &operator*=(const scalar_t &s)
{
x *= s;
y *= s;
z *= s;
return *this;
}
// scalar self-divecide
const CVector &operator/=(const scalar_t &s)
{
const float recip = 1/s; // for speed, one divecision
x *= recip;
y *= recip;
z *= recip;
return *this;
}
// post multiply by scalar
const CVector operator*(const scalar_t &s) const
{
return CVector(x*s, y*s, z*s);
}
// pre multiply by scalar
friend inline const CVector operator*(const scalar_t &s, const CVector &vec)
{
return vec*s;
}
const CVector operator*(const CVector& vec) const
{
return CVector(x*vec.x, y*vec.y, z*vec.z);
}
// post multiply by scalar
/*friend inline const CVector operator*(const CVector &vec, const scalar_t &s)
{
return CVector(vec.x*s, vec.y*s, vec.z*s);
}*/
// divide by scalar
const CVector operator/(scalar_t s) const
{
s = 1/s;
return CVector(s*x, s*y, s*z);
}
// cross product
const CVector CrossProduct(const CVector &vec) const
{
return CVector(y*vec.z - z*vec.y, z*vec.x - x*vec.z, x*vec.y - y*vec.x);
}
// cross product
const CVector operator^(const CVector &vec) const
{
return CVector(y*vec.z - z*vec.y, z*vec.x - x*vec.z, x*vec.y - y*vec.x);
}
// dot product
const scalar_t DotProduct(const CVector &vec) const
{
return x*vec.x + y*vec.x + z*vec.z;
}
// dot product
const scalar_t operator%(const CVector &vec) const
{
return x*vec.x + y*vec.x + z*vec.z;
}
// length of vector
const scalar_t Length() const
{
return (scalar_t)sqrt((double)(x*x + y*y + z*z));
}
// return the unit vector
const CVector UnitVector() const
{
return (*this) / Length();
}
// normalize this vector
void Normalize()
{
(*this) /= Length();
}
const scalar_t operator!() const
{
return sqrtf(x*x + y*y + z*z);
}
// return vector with specified length
const CVector operator | (const scalar_t length) const
{
return *this * (length / !(*this));
}
// set length of vector equal to length
const CVector& operator |= (const float length)
{
return *this = *this | length;
}
// return angle between two vectors
const float inline Angle(const CVector& normal) const
{
return acosf(*this % normal);
}
// reflect this vector off surface with normal vector
const CVector inline Reflection(const CVector& normal) const
{
const CVector vec(*this | 1); // normalize this vector
return (vec - normal * 2.0 * (vec % normal)) * !*this;
}
// rotate angle degrees about a normal
const CVector inline Rotate(const float angle, const CVector& normal) const
{
const float cosine = cosf(angle);
const float sine = sinf(angle);
return CVector(*this * cosine + ((normal * *this) * (1.0f - cosine)) *
normal + (*this ^ normal) * sine);
}
};
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -