📄 enc_lpc.c
字号:
* a I: LP filter coefficients
* ap O: weighted LP filter coefficients
* gamma I: weighting factor
* m I: order of LP filter
*
* Function:
* Weighting of LP filter coefficients, ap[i] = a[i] * (gamma^i).
*
* Returns:
* void
*/
void E_LPC_a_weight(Float32 *a, Float32 *ap, Float32 gamma, Word32 m)
{
Float32 f;
Word32 i;
ap[0] = a[0];
f = gamma;
for (i = 1; i <= m; i++)
{
ap[i] = f*a[i];
f *= gamma;
}
return;
}
/*
* E_LPC_isf_2s3s_decode
*
* Parameters:
* indice I: quantisation indices
* isf_q O: quantised ISFs in the cosine domain
* past_isfq I/O: past ISF quantizer
*
* Function:
* Decoding of ISF parameters.
*
* Returns:
* void
*/
static void E_LPC_isf_2s3s_decode(Word32 *indice, Word16 *isf_q,
Word16 *past_isfq)
{
Word32 i;
Word16 tmp;
for(i = 0; i < 9; i++)
{
isf_q[i] = (Word16)((E_ROM_dico1_isf[indice[0] * 9 + i] * 2.56F) + 0.5F);
}
for(i = 0; i < 7; i++)
{
isf_q[i + 9] =
(Word16)((E_ROM_dico2_isf[indice[1] * 7 + i] * 2.56F) + 0.5F);
}
for(i = 0; i < 5; i++)
{
isf_q[i] = (Word16)(isf_q[i] +
(Word16)((E_ROM_dico21_isf_36b[indice[2] * 5 + i] * 2.56F) + 0.5F));
}
for(i = 0; i < 4; i++)
{
isf_q[i + 5] = (Word16)(isf_q[i + 5] +
(Word32)((E_ROM_dico22_isf_36b[indice[3] * 4 + i] * 2.56F) + 0.5F));
}
for(i = 0; i < 7; i++)
{
isf_q[i + 9] = (Word16)(isf_q[i + 9] +
(Word32)((E_ROM_dico23_isf_36b[indice[4] * 7 + i] * 2.56F) + 0.5F));
}
for(i = 0; i < ORDER; i++)
{
tmp = isf_q[i];
isf_q[i] = (Word16)(tmp + E_ROM_mean_isf[i]);
isf_q[i] = (Word16)(isf_q[i] + ((MU * past_isfq[i]) >> 15));
past_isfq[i] = tmp;
}
E_LPC_isf_reorder(isf_q, ISF_GAP, ORDER);
return;
}
/*
* E_LPC_isf_2s5s_decode
*
* Parameters:
* indice I: quantization indices
* isf_q O: quantized ISFs in the cosine domain
* past_isfq I/O: past ISF quantizer
* isfold I: past quantized ISF
* isf_buf I: isf buffer
* bfi I: Bad frame indicator
* enc_dec I:
*
* Function:
* Decoding of ISF parameters.
*
* Returns:
* void
*/
void E_LPC_isf_2s5s_decode(Word32 *indice, Word16 *isf_q, Word16 *past_isfq)
{
Word32 i;
Word16 tmp;
for (i = 0; i < 9; i++)
{
isf_q[i] = (Word16)((E_ROM_dico1_isf[indice[0] * 9 + i] * 2.56F) + 0.5F);
}
for (i = 0; i < 7; i++)
{
isf_q[i + 9] =
(Word16)((E_ROM_dico2_isf[indice[1] * 7 + i] * 2.56F) + 0.5F);
}
for (i = 0; i < 3; i++)
{
isf_q[i] = (Word16)(isf_q[i] +
(Word32)((E_ROM_dico21_isf[indice[2] * 3 + i] * 2.56F) + 0.5F));
}
for (i = 0; i < 3; i++)
{
isf_q[i + 3] = (Word16)(isf_q[i + 3] +
(Word32)((E_ROM_dico22_isf[indice[3] * 3 + i] * 2.56F) + 0.5F));
}
for (i = 0; i < 3; i++)
{
isf_q[i + 6] = (Word16)(isf_q[i + 6] +
(Word32)((E_ROM_dico23_isf[indice[4] * 3 + i] * 2.56F) + 0.5F));
}
for (i = 0; i < 3; i++)
{
isf_q[i + 9] = (Word16)(isf_q[i + 9] +
(Word32)((E_ROM_dico24_isf[indice[5] * 3 + i] * 2.56F) + 0.5F));
}
for (i = 0; i < 4; i++)
{
isf_q[i + 12] = (Word16)(isf_q[i + 12] +
(Word32)((E_ROM_dico25_isf[indice[6] * 4 + i] * 2.56F) + 0.5F));
}
for (i = 0; i < ORDER; i++)
{
tmp = isf_q[i];
isf_q[i] = (Word16)(tmp + E_ROM_mean_isf[i]);
isf_q[i] = (Word16)(isf_q[i] + ((MU * past_isfq[i]) >> 15));
past_isfq[i] = tmp;
}
E_LPC_isf_reorder(isf_q, ISF_GAP, ORDER);
return;
}
/*
* E_LPC_isf_isp_conversion
*
* Parameters:
* isp O: (Q15) isp[m] (range: -1<=val<1)
* isf I: (Q15) isf[m] normalized (range: 0.0 <= val <= 0.5)
* m I: LPC order
*
* Function:
* Transformation isf to isp
*
* ISP are immitance spectral pair in cosine domain (-1 to 1).
* ISF are immitance spectral pair in frequency domain (0 to 6400).
* Returns:
* void
*/
void E_LPC_isf_isp_conversion(Word16 isf[], Word16 isp[], Word16 m)
{
Word32 i, ind, offset, tmp;
for (i = 0; i < m - 1; i++)
{
isp[i] = isf[i];
}
isp[m - 1] = (Word16)(isf[m - 1] << 1);
for (i = 0; i < m; i++)
{
ind = isp[i] >> 7; /* ind = b7-b15 of isf[i] */
offset = isp[i] & 0x007f; /* offset = b0-b6 of isf[i] */
/* isp[i] = table[ind]+ ((table[ind+1]-table[ind])*offset) / 128 */
tmp = ((E_ROM_cos[ind + 1] - E_ROM_cos[ind]) * offset) << 1;
isp[i] = (Word16)(E_ROM_cos[ind] + (tmp >> 8));
}
return;
}
/*
* E_LPC_chebyshev
*
* Parameters:
* x I: value of evaluation; x=cos(freq)
* f I: coefficients of sum or diff polynomial
* n I: order of polynomial
*
* Function:
* Evaluates the Chebyshev polynomial series
*
* The polynomial order is n = m/2 (m is the prediction order)
* The polynomial is given by
* C(x) = f(0)T_n(x) + f(1)T_n-1(x) + ... +f(n-1)T_1(x) + f(n)/2
*
* Returns:
* the value of the polynomial C(x)
*/
static Float32 E_LPC_chebyshev(Float32 x, Float32 *f, Word32 n)
{
Float32 b1, b2, b0, x2;
Word32 i; /* for the special case of 10th order */
/* filter (n=5) */
x2 = 2.0F * x; /* x2 = 2.0*x; */
b2 = f[0]; /* b2 = f[0]; */
b1 = x2 * b2 + f[1]; /* b1 = x2*b2 + f[1]; */
for (i = 2; i < n; i++)
{
b0 = x2 * b1 - b2 + f[i]; /* b0 = x2 * b1 - 1. + f[2]; */
b2 = b1; /* b2 = x2 * b0 - b1 + f[3]; */
b1 = b0; /* b1 = x2 * b2 - b0 + f[4]; */
}
return (x * b1 - b2 + 0.5F * f[n]); /* return (x*b1 - b2 + 0.5*f[5]); */
}
/*
* E_LPC_isf_sub_vq
*
* Parameters:
* x I/O: unquantised / quantised ISF
* dico I: codebook
* dim I: dimension of vector
* dico_size I: codebook size
* distance O: minimum distance
*
* Function:
* Quantization of a subvector of size 2 in Split-VQ of ISFs
*
* Returns:
* quantisation index
*/
Word16 E_LPC_isf_sub_vq(Float32 *x, const Float32 *E_ROM_dico, Word32 dim,
Word32 E_ROM_dico_size, Float32 *distance)
{
Float32 dist_min, dist, temp;
const Float32 *p_E_ROM_dico;
Word32 i, j, index = 0;
dist_min = 1.0e30f;
p_E_ROM_dico = E_ROM_dico;
for (i = 0; i < E_ROM_dico_size; i++)
{
dist = x[0] - *p_E_ROM_dico++;
dist *= dist;
for (j = 1; j < dim; j++)
{
temp = x[j] - *p_E_ROM_dico++;
dist += temp * temp;
}
if (dist < dist_min)
{
dist_min = dist;
index = i;
}
}
*distance = dist_min;
/* Reading the selected vector */
memcpy(x, &E_ROM_dico[index * dim], dim * sizeof(Float32));
return (Word16)index;
}
/*
* E_LPC_lag_wind
*
* Parameters:
* r I/O: autocorrelations vector
* m I: window lenght
*
* Function:
* Lag windowing of the autocorrelations.
*
* Returns:
* void
*/
void E_LPC_lag_wind(Float32 r[], Word32 m)
{
Word32 i;
for (i = 0; i < m; i++)
{
r[i] *= E_ROM_lag_window[i];
}
return;
}
/*
* E_LPC_lev_dur
*
* Parameters:
* r_h I: vector of autocorrelations (msb)
* r_l I: vector of autocorrelations (lsb)
* A O: LP coefficients (a[0] = 1.0) (m = 16)
* rc O: reflection coefficients
* mem I/O: static memory
*
* Function:
* Wiener-Levinson-Durbin algorithm to compute
* the LPC parameters from the autocorrelations of speech.
*
* Returns:
* void
*/
void E_LPC_lev_dur(Float32 *a, Float32 *r, Word32 m)
{
Float32 buf[M];
Float32 *rc; /* reflection coefficients 0,...,m-1 */
Float32 s, at, err;
Word32 i, j, l;
rc = &buf[0];
rc[0] = (-r[1]) / r[0];
a[0] = 1.0F;
a[1] = rc[0];
err = r[0] + r[1] * rc[0];
for (i = 2; i <= m; i++)
{
s = 0.0F;
for (j = 0; j < i; j++)
{
s += r[i - j] * a[j];
}
rc[i - 1]= (-s) / (err);
for (j = 1; j <= (i >> 1); j++)
{
l = i - j;
at = a[j] + rc[i - 1] * a[l];
a[l] += rc[i - 1] * a[j];
a[j] = at;
}
a[i] = rc[i - 1];
err += rc[i - 1] * s;
if (err <= 0.0F)
{
err = 0.01F;
}
}
return;
}
/*
* E_LPC_a_isp_conversion
*
* Parameters:
* a I: LP filter coefficients
* isp O: Immittance spectral pairs
* old_isp I: ISP vector from past frame
*
* Function:
* Compute the ISPs from the LPC coefficients a[] using Chebyshev
* polynomials. The found ISPs are in the cosine domain with values
* in the range from 1 down to -1.
* The table E_ROM_grid[] contains the polongs (in the cosine domain) at
* which the polynomials are evaluated.
*
* The ISPs are the roots of the two polynomials F1(z) and F2(z)
* defined as
* F1(z) = A(z) + z^-m A(z^-1)
* and F2(z) = A(z) - z^-m A(z^-1)
*
* for a even order m=2n, F1(z) has 5 conjugate roots on the unit circle
* and F2(z) has 4 conjugate roots on the unit circle in addition to two
* roots at 0 and pi.
*
* For a 10th order LP analysis, F1(z) and F2(z) can be written as
*
* F1(z) = (1 + a[10]) PRODUCT (1 - 2 cos(w_i) z^-1 + z^-2 )
* i=0,2,4,6,8
*
* F2(z) = (1 - a[10]) (1 - z^-2) PRODUCT (1 - 2 cos(w_i) z^-1 + z^-2 )
* i=1,3,5,7
*
* The ISPs are the M-1 frequencies w_i, i=0...M-2 plus the last
* predictor coefficient a[M].
*
* Returns:
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -