⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 g721.cpp

📁 wxWidgets 2.8.9 Downloads
💻 CPP
字号:
/* * This source code is a product of Sun Microsystems, Inc. and is provided * for unrestricted use.  Users may copy or modify this source code without * charge. * * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. * * Sun source code is provided with no support and without any obligation on * the part of Sun Microsystems, Inc. to assist in its use, correction, * modification or enhancement. * * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE * OR ANY PART THEREOF. * * In no event will Sun Microsystems, Inc. be liable for any lost revenue * or profits or other special, indirect and consequential damages, even if * Sun has been advised of the possibility of such damages. * * Sun Microsystems, Inc. * 2550 Garcia Avenue * Mountain View, California  94043 */#include "wx/wxprec.h"/* * g721.c * * Description: * * g721_encoder(), g721_decoder() * * These routines comprise an implementation of the CCITT G.721 ADPCM * coding algorithm.  Essentially, this implementation is identical to * the bit level description except for a few deviations which * take advantage of work station attributes, such as hardware 2's * complement arithmetic and large memory.  Specifically, certain time * consuming operations such as multiplications are replaced * with lookup tables and software 2's complement operations are * replaced with hardware 2's complement. * * The deviation from the bit level specification (lookup tables) * preserves the bit level performance specifications. * * As outlined in the G.721 Recommendation, the algorithm is broken * down into modules.  Each section of code below is preceded by * the name of the module which it is implementing. * */#include "wx/mmedia/internal/g72x.h"static short qtab_721[7] = {-124, 80, 178, 246, 300, 349, 400};/* * Maps G.721 code word to reconstructed scale factor normalized log * magnitude values. */static short _dqlntab[16] = {-2048, 4, 135, 213, 273, 323, 373, 425,                425, 373, 323, 273, 213, 135, 4, -2048};/* Maps G.721 code word to log of scale factor multiplier. */static short _witab[16] = {-12, 18, 41, 64, 112, 198, 355, 1122,                1122, 355, 198, 112, 64, 41, 18, -12};/* * Maps G.721 code words to a set of values whose long and short * term averages are computed and then compared to give an indication * how stationary (steady state) the signal is. */static short _fitab[16] = {0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00,                0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0};/* * g721_encoder() * * Encodes the input vale of linear PCM, A-law or u-law data sl and returns * the resulting code. -1 is returned for unknown input coding value. */intg721_encoder(    int                sl,    int                in_coding,    struct g72x_state *state_ptr){    short        sezi, se, sez;        /* ACCUM */    short        d;                    /* SUBTA */    short        sr;                   /* ADDB */    short        y;                    /* MIX */    short        dqsez;                /* ADDC */    short        dq, i;    switch (in_coding) {    /* linearize input sample to 14-bit PCM */    case AUDIO_ENCODING_ALAW:        sl = alaw2linear(sl) >> 2;        break;    case AUDIO_ENCODING_ULAW:        sl = ulaw2linear(sl) >> 2;        break;    case AUDIO_ENCODING_LINEAR:        sl = ((short)sl) >> 2;        /* 14-bit dynamic range */        break;    default:        return (-1);    }    sezi = predictor_zero(state_ptr);    sez = sezi >> 1;    se = (sezi + predictor_pole(state_ptr)) >> 1;    /* estimated signal */    d = sl - se;                /* estimation difference */    /* quantize the prediction difference */    y = step_size(state_ptr);        /* quantizer step size */    i = quantize(d, y, qtab_721, 7);    /* i = ADPCM code */    dq = reconstruct(i & 8, _dqlntab[i], y);    /* quantized est diff */    sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq;    /* reconst. signal */    dqsez = sr + sez - se;            /* pole prediction diff. */    update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);    return (i);}/* * g721_decoder() * * Description: * * Decodes a 4-bit code of G.721 encoded data of i and * returns the resulting linear PCM, A-law or u-law value. * return -1 for unknown out_coding value. */intg721_decoder(    int                i,    int                out_coding,    struct g72x_state *state_ptr){    short        sezi, sei, sez, se;    /* ACCUM */    short        y;                     /* MIX */    short        sr;                    /* ADDB */    short        dq;    short        dqsez;    i &= 0x0f;            /* mask to get proper bits */    sezi = predictor_zero(state_ptr);    sez = sezi >> 1;    sei = sezi + predictor_pole(state_ptr);    se = sei >> 1;            /* se = estimated signal */    y = step_size(state_ptr);    /* dynamic quantizer step size */    dq = reconstruct(i & 0x08, _dqlntab[i], y); /* quantized diff. */    sr = (dq < 0) ? (se - (dq & 0x3FFF)) : se + dq;    /* reconst. signal */    dqsez = sr - se + sez;            /* pole prediction diff. */    update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);    switch (out_coding) {    case AUDIO_ENCODING_ALAW:        return (tandem_adjust_alaw(sr, se, y, i, 8, qtab_721));    case AUDIO_ENCODING_ULAW:        return (tandem_adjust_ulaw(sr, se, y, i, 8, qtab_721));    case AUDIO_ENCODING_LINEAR:        return (sr << 2);    /* sr was 14-bit dynamic range */    default:        return (-1);    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -