⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dscdaconvertscanint.c

📁 PC/104扩展模块DIAMOND-MM-16-AT驱动程序
💻 C
字号:
//=============================================================================
// (c) Copyright 2005 Diamond Systems Corporation. Use of this source code
// is subject to the terms of Diamond Systems' Software License Agreement.
// Diamond Systems provides no warranty of proper performance if this
// source code is modified.
//
// File: DSCDAConvertScanInt.c   v5.9
// Desc: Sample program that demonstrates how to perform an interrupt-based DA
//		 conversion scan
// Created by	KL
//=============================================================================

#include <stdio.h>

#ifdef _WIN32
#ifndef _WIN32_WCE
#include <conio.h>
#endif

#include <windows.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
// diamond driver includes
#include "dscud.h"
#endif


#ifdef _WIN32_WCE

#include <string.h>
#include <Winsock2.h>

static int kbhit()
{
	int i;
	int result=0;

	
	result |= GetAsyncKeyState(VK_RETURN);
	result |= GetAsyncKeyState(VK_SPACE);

	if (result != 0)
	{
		getchar();
		return 1;
	}

	//number keys, 0-9
	for (i=48; i<=57; i++)
		result |= GetAsyncKeyState(i);

	if (result != 0)
	{
		getchar();
		return 1;
	}

	//capital character keys, A-Z
	for (i=65; i<=90; i++)
		result |= GetAsyncKeyState(i);

	if (result != 0)
	{
		getchar();
		return 1;
	}

	//lower case keys, a-z
	for (i=97; i<=122; i++)
		result |= GetAsyncKeyState(i);

	if (result != 0)
	{
		getchar();
		return 1;
	}

	return result;
}

#endif


// DOS
#ifdef __BORLANDC__
#include <conio.h>
#include <dos.h>
#include <stdlib.h>
#include <math.h>
#include <mem.h>
// diamond driver includes
#include "../../../../current/dev/source/dscud.h"
#endif

// Linux and QNX
#if defined(linux) || defined(__QNXNTO__) || defined(_WRS_VXWORKS_5_X)
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <string.h>
// diamond driver includes
#include "dscud.h"


#ifdef _WRS_VXWORKS_5_X
#include <selectLib.h>
#define main DMM16ATDSCDAConvertScanInt
#else
#include <sys/time.h>
#endif

static int kbhit()
{
	struct timeval timeout;
	fd_set rfds;

	timeout.tv_sec = 0;
	timeout.tv_usec = 0;

	FD_ZERO(&rfds);
	FD_SET(0, &rfds);

	if ( select(0+1, &rfds, NULL, NULL, &timeout) > 0 )
		return getchar();

	return 0;
}
#endif

// macros defined
#define SLEEP_TIME 1000

// var declarations
BYTE result;  // returned error code
DSCB dscb;    // handle used to refer to the board
DSCCB dsccb;  // structure containing board settings
DSCS dscs;    // structure containing interrupt-based sampling status information
DSCAIOINT dscaioint;   // structure containing I/O interrupt settings
ERRPARAMS errorParams; // structure for returning error code and error string
int intBuff;     // temp variable of size int
long longBuff;   // temp variable of size long
float floatBuff; // temp variable of size float
unsigned int i;  // miscellaneous counter

//=============================================================================
// Name: main()
// Desc: Starting function that calls the driver functions used
//
//		 NOTE: By convention, you should capture the BYTE return value for each
//		 driver API call, and check the error code.
//
//	     I. Driver Initialization
//	    II. Board Initialization
//	   III. I/O Interrupt Settings Initialization
//	    IV. DA Conversion
//	     V. Cleanup
//
//=============================================================================

int main( void )
{
	//=========================================================================
	// I. DRIVER INITIALIZATION
	//
	//    Initializes the DSCUD library.
	//
	//    STEPS TO FOLLOW:
	//
	//	  1. initialize the driver, using the driver version for validation
	//=========================================================================

	if( dscInit( DSC_VERSION ) != DE_NONE )
	{
		dscGetLastError(&errorParams);
		fprintf( stderr, "dscInit error: %s %s\n", dscGetErrorString(errorParams.ErrCode), errorParams.errstring );
		return 0;
	}

	//=========================================================================
	// II. BOARD INITIALIZATION
	//
	//	   Initialize the DMM-16-AT board. This function passes the various
	//	   hardware parameters to the driver and resets the hardware.
	//
	//     STEPS TO FOLLOW:
	//
	//	   1. set the board type to DSC_DMM16AT for DMM-16-AT board
	//	   2. set the base address
	//	   3. set the interrupt level
	//	   4. intialize and register the board with the driver, after which
	//		  the struct, dscb, now holds the handle for the board
	//=========================================================================

	printf( "\nDMM16AT BOARD INITIALIZATION:\n" );

	printf("Enter the base address (default 0x300) : ");
	scanf( "%hx", &dsccb.base_address );

	printf("Enter the interrupt : ");
	scanf("%d", &intBuff);
	dsccb.int_level = (BYTE) intBuff;

	if(dscInitBoard(DSC_DMM16AT, &dsccb, &dscb)!= DE_NONE)
	{
		dscGetLastError(&errorParams);
		fprintf( stderr, "dscInitBoard error: %s %s\n", dscGetErrorString(errorParams.ErrCode), errorParams.errstring );
		return 0;
	}

	//=========================================================================
	// III. I/O INTERRUPT SETTINGS INITIALIZATION
	//
	//	    Initialize the structure containing the analog I/O interrupt
	//	    settings.
	//
	//	    NOTE: You must allocate space for the buffer holding the returned
	//		      sample values. Also, be generous in allocating storage.
	//			  Allocating insufficient memory to hold sample data will result
	//			  in improper behavior of the driver, such as hanging interrupt
	//			  operations or assertion errors.
	//
	//      STEPS TO FOLLOW:
	//
	//	    1. set the number of conversions (must be a multiple of the fifo
	//		   depth)
	//	    2. set the conversion rate (must be less than 100 kHz)
	//	    3. set the cycle flag
	//	    4. set the internal clock flag
	//	    5. set the low channel (must be between 0-1)
	//	    6. set the high channel (must be between 0-1)
	//	    7. set the external gate enable flag
	//	    8. set the internal clock gate flag
	//	    9. allocate memory for the sample values and initialize them
	//=========================================================================

	/* PRE-FILLED EXAMPLE
	dscaioint.num_conversions = 1024;
	dscaioint.conversion_rate = 1000;
	dscaioint.cycle = (BYTE)FALSE;
	dscaioint.internal_clock = (BYTE)TRUE;
	dscaioint.low_channel = 0;
	dscaioint.high_channel = 3;
	dscaioint.external_gate_enable = (BYTE)FALSE;
	dscaioint.internal_clock_gate = (BYTE)FALSE;
	*/

	printf( "\nI/O INTERRUPT SETTINGS INITIALIZATION\n" );

	memset(&dscaioint, 0, sizeof(DSCAIOINT));

	printf( "Enter the number of conversions (must be a multiple of FIFO depth): " );
	scanf("%ld", &longBuff );
	dscaioint.num_conversions = longBuff;

	printf( "Enter the conversion rate in Hz (must be less than 100000): " );
	scanf("%f", &floatBuff);
	dscaioint.conversion_rate = (FLOAT) floatBuff;

	printf( "Enter the cycle flag (0 for FALSE, 1 for TRUE): " );
	scanf("%d", &intBuff);
	dscaioint.cycle = (BOOL) intBuff;

	printf( "Enter the internal clock flag (0 for FALSE, 1 for TRUE): " );
	scanf("%d", &intBuff);
	dscaioint.internal_clock = (BOOL) intBuff;

	printf( "\nThe range of the lowest and highest channel must follow the formula of\n(1+highestChannel-lowestChannel) = multiple of numb conversions\n");

	printf( "Enter the lowest channel in the scan range (0-3): " );
	scanf("%d", &intBuff);
	dscaioint.low_channel = (BYTE) intBuff;

	printf( "Enter the highest channel in the scan range (0-3): " );
	scanf("%d", &intBuff);
	dscaioint.high_channel = (BYTE) intBuff;

	dscaioint.external_gate_enable = 0;

	dscaioint.internal_clock_gate = 0;

	dscaioint.fifo_enab = FALSE;

	dscaioint.fifo_depth = 256;

	dscaioint.dump_threshold = 0;

	printf("Enter the output code ( less than 4096) : ");
	scanf("%d", &intBuff );

	getchar();

	dscaioint.sample_values = (DSCSAMPLE*)malloc( sizeof( DSCSAMPLE ) * dscaioint.num_conversions );

	for( i = 0; i < dscaioint.num_conversions ; i++ ) dscaioint.sample_values[i] = (DSCSAMPLE)intBuff;

	//=========================================================================
	// IV. DA CONVERSION AND OUTPUT
	//
	//	    Perform the actual DA conversions, then take AD samples to verify
	//	    and output the results. Note that in order to verify the conversion
	//	    process on a particular output channel, we must set the input
	//	    channel on the AD conversion to (Output Channel + 4). To calculate
	//	    the output code to obtain a particular input voltage, we must use
	//	    one of the formulas located in the manual for your board (under the
	//	    the section, "Generating an Analog Output"). For example, the formula
	//	    for bipolar mode is:
	//
	//	    Output code = Output Voltage / Full-Scale Voltage * 2048 + 2048
	//
	//	    To calculate the actual input voltages from sample codes, we must
	//	    convert the sample code (which must be cast to a short to get the
	//	    correct code) and then plug it into one of the formulas located in
	//	    the manual for your board (under "A/D Conversion Formulas"). For
	//	    example, we are using a bipolar input range and 32-bit signed
	//	    integers:
	//
	//	    Input voltage = (AD Code / 32768) x Full-Scale Voltage
	//
	//	    STEPS TO FOLLOW:
	//
	//	    1. enable channels (any of 0-1)
	//	    2. set the output codes
	//	    3. write the output codes to the selected output channels
	//	    7. repeat step 3 until a key is pressed
	//=========================================================================

	printf( "\nDA CONVERSION AND OUTPUT\n" );

	printf( "Sending output codes to enabled channels...hit any key to stop\n" );
	
	while ( !kbhit() )
	{
		if( ( result = dscDAConvertScanInt( dscb, &dscaioint ) ) != DE_NONE )
		{
			dscGetLastError(&errorParams);
			fprintf( stderr, "dscDAConvertScanInt error: %s %s\n", dscGetErrorString(errorParams.ErrCode), errorParams.errstring );
			free( dscaioint.sample_values ); // remember to deallocate malloc() memory
			return 0;
		}

		dscs.da_transfers = 0;
		dscs.op_type = OP_TYPE_INT;

		do{
			dscSleep(SLEEP_TIME);
			dscGetStatus(dscb,&dscs);
			printf("D/A Interrupt Transfers in progress %lu\n", dscs.da_transfers);
		}while (dscs.op_type != OP_TYPE_NONE && !kbhit()) ;

		
		// cancel interrupts manually for recycled mode or if interrupts are still running
		if( dscs.op_type != OP_TYPE_NONE)
		{
			if( (result = dscCancelOp(dscb)) != DE_NONE)
			{
				dscGetLastError(&errorParams);
				fprintf( stderr, "dscCancelOp error: %s %s\n", dscGetErrorString(errorParams.ErrCode), errorParams.errstring );
				free( dscaioint.sample_values ); // remember to deallocate malloc() memory
				return 0;
			}
		}

		printf("\n");
	}

	//=========================================================================
	// VII. CLEANUP
	//
	//	    Cleanup any remnants left by the program and free the resources
	//	    used by the driver.
	//
	//      STEPS TO FOLLOW:
	//
	//	    1. free the memory allocated for sample values
	//	    2. free the driver resources
	//=========================================================================

	free( dscaioint.sample_values );

	dscFree();

	printf( "\nDSCDAConvertScanInt completed.\n" );


	return 0;
} // end main()


#ifdef _WIN32_WCE
int WINAPI WinMain(	HINSTANCE hInstance,
					HINSTANCE hPrevInstance,
					LPTSTR    lpCmdLine,
					int       nCmdShow)
{
	printf("For users running cycled mode: to EXIT, hold down the 'q' key\n");
	printf("on the keyboard then press 'Enter' when 'q' letters appear on screen\n\n");
	main();

	return 0;
}

#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -