⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ximaint.cpp

📁 It s a tool designed to extract as much information as possible from Bluetooth devices without the r
💻 CPP
📖 第 1 页 / 共 3 页
字号:
          for (i=0; i<4; i++) {            kernelx[i]=KernelSinc((float)(xi+i-1-x));            kernely[i]=KernelSinc((float)(yi+i-1-y));          }//for i          break;        case IM_BLACKMAN:          for (i=0; i<4; i++) {            kernelx[i]=KernelBlackman((float)(xi+i-1-x));            kernely[i]=KernelBlackman((float)(yi+i-1-y));          }//for i          break;        case IM_BESSEL:          for (i=0; i<4; i++) {            kernelx[i]=KernelBessel((float)(xi+i-1-x));            kernely[i]=KernelBessel((float)(yi+i-1-y));          }//for i          break;        case IM_GAUSSIAN:          for (i=0; i<4; i++) {            kernelx[i]=KernelGaussian((float)(xi+i-1-x));            kernely[i]=KernelGaussian((float)(yi+i-1-y));          }//for i          break;        case IM_QUADRATIC:          for (i=0; i<4; i++) {            kernelx[i]=KernelQuadratic((float)(xi+i-1-x));            kernely[i]=KernelQuadratic((float)(yi+i-1-y));          }//for i          break;        case IM_MITCHELL:          for (i=0; i<4; i++) {            kernelx[i]=KernelMitchell((float)(xi+i-1-x));            kernely[i]=KernelMitchell((float)(yi+i-1-y));          }//for i          break;        case IM_CATROM:          for (i=0; i<4; i++) {            kernelx[i]=KernelCatrom((float)(xi+i-1-x));            kernely[i]=KernelCatrom((float)(yi+i-1-y));          }//for i          break;      }//switch      rr=gg=bb=aa=0;      if (((xi+2)<head.biWidth) && xi>=1 && ((yi+2)<head.biHeight) && (yi>=1) && !IsIndexed()) {        //optimized interpolation (faster pixel reads) for RGB24 images with all pixels inside bounds        BYTE *pxptr, *pxptra;        for (yii=yi-1; yii<yi+3; yii++) {          pxptr=(BYTE *)BlindGetPixelPointer(xi-1, yii);    //calculate pointer to first byte in row          kernelyc=kernely[yii-(yi-1)];#if CXIMAGE_SUPPORT_ALPHA          if (AlphaIsValid()) {            //alpha is supported and valid (optimized bicubic int. for image with alpha)            pxptra=AlphaGetPointer(xi-1, yii);            kernel=kernelyc*kernelx[0];            bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++); aa+=kernel*(*pxptra++);            kernel=kernelyc*kernelx[1];            bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++); aa+=kernel*(*pxptra++);            kernel=kernelyc*kernelx[2];            bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++); aa+=kernel*(*pxptra++);            kernel=kernelyc*kernelx[3];            bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr); aa+=kernel*(*pxptra);          } else#endif          //alpha not supported or valid (optimized bicubic int. for no alpha channel)          {            kernel=kernelyc*kernelx[0];            bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++);            kernel=kernelyc*kernelx[1];            bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++);            kernel=kernelyc*kernelx[2];            bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++);            kernel=kernelyc*kernelx[3];            bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr);          }        }//yii      } else {        //slower more flexible interpolation for border pixels and paletted images        RGBQUAD rgbs;        for (yii=yi-1; yii<yi+3; yii++) {          kernelyc=kernely[yii-(yi-1)];          for (xii=xi-1; xii<xi+3; xii++) {            kernel=kernelyc*kernelx[xii-(xi-1)];            rgbs=GetPixelColorWithOverflow(xii, yii, ofMethod, rplColor);            rr+=kernel*rgbs.rgbRed;            gg+=kernel*rgbs.rgbGreen;            bb+=kernel*rgbs.rgbBlue;#if CXIMAGE_SUPPORT_ALPHA            aa+=kernel*rgbs.rgbReserved;#endif          }//xii        }//yii      }//if      //for all colors, clip to 0..255 and assign to RGBQUAD      if (rr>255) rr=255; if (rr<0) rr=0; color.rgbRed=(BYTE) rr;      if (gg>255) gg=255; if (gg<0) gg=0; color.rgbGreen=(BYTE) gg;      if (bb>255) bb=255; if (bb<0) bb=0; color.rgbBlue=(BYTE) bb;#if CXIMAGE_SUPPORT_ALPHA      if (AlphaIsValid()) {        if (aa>255) aa=255; if (aa<0) aa=0; color.rgbReserved=(BYTE) aa;      } else#endif		{ //Alpha not supported or no alpha at all			color.rgbReserved = 0;		}      return color;    case IM_LANCZOS:      //lanczos window (16*16) sinc interpolation      if (((xi+6)<0) || ((xi-5)>=head.biWidth) || ((yi+6)<0) || ((yi-5)>=head.biHeight)) {        //all points are outside bounds        switch (ofMethod) {          case OM_COLOR: case OM_TRANSPARENT: case OM_BACKGROUND:            //we don't need to interpolate anything with all points outside in this case            return GetPixelColorWithOverflow(-999, -999, ofMethod, rplColor);            break;          default:            //recalculate coordinates and use faster method later on            OverflowCoordinates(x,y,ofMethod);            xi=(int)(x); if (x<0) xi--;   //x and/or y have changed ... recalculate xi and yi            yi=(int)(y); if (y<0) yi--;        }//switch      }//if      for (xii=xi-5; xii<xi+7; xii++) kernelx[xii-(xi-5)]=KernelLanczosSinc((float)(xii-x), 6.0f);      rr=gg=bb=aa=0;      if (((xi+6)<head.biWidth) && ((xi-5)>=0) && ((yi+6)<head.biHeight) && ((yi-5)>=0) && !IsIndexed()) {        //optimized interpolation (faster pixel reads) for RGB24 images with all pixels inside bounds        BYTE *pxptr, *pxptra;        for (yii=yi-5; yii<yi+7; yii++) {          pxptr=(BYTE *)BlindGetPixelPointer(xi-5, yii);    //calculate pointer to first byte in row          kernelyc=KernelLanczosSinc((float)(yii-y),6.0f);#if CXIMAGE_SUPPORT_ALPHA          if (AlphaIsValid()) {            //alpha is supported and valid            pxptra=AlphaGetPointer(xi-1, yii);            for (xii=0; xii<12; xii++) {              kernel=kernelyc*kernelx[xii];              bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++); aa+=kernel*(*pxptra++);            }//for xii          } else#endif          //alpha not supported or valid          {            for (xii=0; xii<12; xii++) {              kernel=kernelyc*kernelx[xii];              bb+=kernel*(*pxptr++); gg+=kernel*(*pxptr++); rr+=kernel*(*pxptr++);            }//for xii          }        }//yii      } else {        //slower more flexible interpolation for border pixels and paletted images        RGBQUAD rgbs;        for (yii=yi-5; yii<yi+7; yii++) {          kernelyc=KernelLanczosSinc((float)(yii-y),6.0f);          for (xii=xi-5; xii<xi+7; xii++) {            kernel=kernelyc*kernelx[xii-(xi-5)];            rgbs=GetPixelColorWithOverflow(xii, yii, ofMethod, rplColor);            rr+=kernel*rgbs.rgbRed;            gg+=kernel*rgbs.rgbGreen;            bb+=kernel*rgbs.rgbBlue;#if CXIMAGE_SUPPORT_ALPHA            aa+=kernel*rgbs.rgbReserved;#endif          }//xii        }//yii      }//if      //for all colors, clip to 0..255 and assign to RGBQUAD      if (rr>255) rr=255; if (rr<0) rr=0; color.rgbRed=(BYTE) rr;      if (gg>255) gg=255; if (gg<0) gg=0; color.rgbGreen=(BYTE) gg;      if (bb>255) bb=255; if (bb<0) bb=0; color.rgbBlue=(BYTE) bb;#if CXIMAGE_SUPPORT_ALPHA      if (AlphaIsValid()) {        if (aa>255) aa=255; if (aa<0) aa=0; color.rgbReserved=(BYTE) aa;         } else#endif		{ //Alpha not supported or no alpha at all			color.rgbReserved = 0;		}      return color;  }//switch}/////////////////////////////////////////////////////////////////////////////////** * Helper function for GetAreaColorInterpolated. * Adds 'surf' portion of image pixel with color 'color' to (rr,gg,bb,aa). */void CxImage::AddAveragingCont(RGBQUAD const &color, float const surf, float &rr, float &gg, float &bb, float &aa){  rr+=color.rgbRed*surf;  gg+=color.rgbGreen*surf;  bb+=color.rgbBlue*surf;#if CXIMAGE_SUPPORT_ALPHA  aa+=color.rgbReserved*surf;#endif}/////////////////////////////////////////////////////////////////////////////////** * This method is similar to GetPixelColorInterpolated, but this method also properly handles  * subsampling. * If you need to sample original image with interval of more than 1 pixel (as when shrinking an image),  * you should use this method instead of GetPixelColorInterpolated or aliasing will occur. * When area width and height are both less than pixel, this method gets pixel color by interpolating * color of frame center with selected (inMethod) interpolation by calling GetPixelColorInterpolated.  * If width and height are more than 1, method calculates color by averaging color of pixels within area. * Interpolation method is not used in this case. Pixel color is interpolated by averaging instead. * If only one of both is more than 1, method uses combination of interpolation and averaging. * Chosen interpolation method is used, but since it is averaged later on, there is little difference * between IM_BILINEAR (perhaps best for this case) and better methods. IM_NEAREST_NEIGHBOUR again * leads to aliasing artifacts. * This method is a bit slower than GetPixelColorInterpolated and when aliasing is not a problem, you should * simply use the later.  * * \param  xc, yc - center of (rectangular) area * \param  w, h - width and height of area * \param  inMethod - interpolation method that is used, when interpolation is used (see above) * \param  ofMethod - overflow method used when retrieving individual pixel colors * \param  rplColor - replacement colour to use, in OM_COLOR * * \author ***bd*** 2.2004 */RGBQUAD CxImage::GetAreaColorInterpolated(  float const xc, float const yc, float const w, float const h,   InterpolationMethod const inMethod,   OverflowMethod const ofMethod,   RGBQUAD* const rplColor){	RGBQUAD color;      //calculated colour		if (h<=1 && w<=1) {		//both width and height are less than one... we will use interpolation of center point		return GetPixelColorInterpolated(xc, yc, inMethod, ofMethod, rplColor);	} else {		//area is wider and/or taller than one pixel:		CxRect2 area(xc-w/2.0f, yc-h/2.0f, xc+w/2.0f, yc+h/2.0f);   //area		int xi1=(int)(area.botLeft.x+0.49999999f);                //low x		int yi1=(int)(area.botLeft.y+0.49999999f);                //low y						int xi2=(int)(area.topRight.x+0.5f);                      //top x		int yi2=(int)(area.topRight.y+0.5f);                      //top y (for loops)				float rr,gg,bb,aa;                                        //red, green, blue and alpha components		rr=gg=bb=aa=0;		int x,y;                                                  //loop counters		float s=0;                                                //surface of all pixels		float cps;                                                //surface of current crosssection		if (h>1 && w>1) {			//width and height of area are greater than one pixel, so we can employ "ordinary" averaging			CxRect2 intBL, intTR;     //bottom left and top right intersection			intBL=area.CrossSection(CxRect2(((float)xi1)-0.5f, ((float)yi1)-0.5f, ((float)xi1)+0.5f, ((float)yi1)+0.5f));			intTR=area.CrossSection(CxRect2(((float)xi2)-0.5f, ((float)yi2)-0.5f, ((float)xi2)+0.5f, ((float)yi2)+0.5f));			float wBL, wTR, hBL, hTR;			wBL=intBL.Width();            //width of bottom left pixel-area intersection			hBL=intBL.Height();           //height of bottom left...			wTR=intTR.Width();            //width of top right...			hTR=intTR.Height();           //height of top right...						AddAveragingCont(GetPixelColorWithOverflow(xi1,yi1,ofMethod,rplColor), wBL*hBL, rr, gg, bb, aa);    //bottom left pixel			AddAveragingCont(GetPixelColorWithOverflow(xi2,yi1,ofMethod,rplColor), wTR*hBL, rr, gg, bb, aa);    //bottom right pixel			AddAveragingCont(GetPixelColorWithOverflow(xi1,yi2,ofMethod,rplColor), wBL*hTR, rr, gg, bb, aa);    //top left pixel			AddAveragingCont(GetPixelColorWithOverflow(xi2,yi2,ofMethod,rplColor), wTR*hTR, rr, gg, bb, aa);    //top right pixel			//bottom and top row			for (x=xi1+1; x<xi2; x++) {				AddAveragingCont(GetPixelColorWithOverflow(x,yi1,ofMethod,rplColor), hBL, rr, gg, bb, aa);    //bottom row				AddAveragingCont(GetPixelColorWithOverflow(x,yi2,ofMethod,rplColor), hTR, rr, gg, bb, aa);    //top row			}			//leftmost and rightmost column			for (y=yi1+1; y<yi2; y++) {				AddAveragingCont(GetPixelColorWithOverflow(xi1,y,ofMethod,rplColor), wBL, rr, gg, bb, aa);    //left column				AddAveragingCont(GetPixelColorWithOverflow(xi2,y,ofMethod,rplColor), wTR, rr, gg, bb, aa);    //right column			}			for (y=yi1+1; y<yi2; y++) {				for (x=xi1+1; x<xi2; x++) { 					color=GetPixelColorWithOverflow(x,y,ofMethod,rplColor);					rr+=color.rgbRed;					gg+=color.rgbGreen;					bb+=color.rgbBlue;#if CXIMAGE_SUPPORT_ALPHA					aa+=color.rgbReserved;#endif				}//for x			}//for y		} else {			//width or height greater than one:			CxRect2 intersect;                                          //intersection with current pixel			CxPoint2 center;			for (y=yi1; y<=yi2; y++) {				for (x=xi1; x<=xi2; x++) {					intersect=area.CrossSection(CxRect2(((float)x)-0.5f, ((float)y)-0.5f, ((float)x)+0.5f, ((float)y)+0.5f));					center=intersect.Center();					color=GetPixelColorInterpolated(center.x, center.y, inMethod, ofMethod, rplColor);					cps=intersect.Surface();					rr+=color.rgbRed*cps;					gg+=color.rgbGreen*cps;					bb+=color.rgbBlue*cps;#if CXIMAGE_SUPPORT_ALPHA					aa+=color.rgbReserved*cps;#endif				}//for x			}//for y      		}//if				s=area.Surface();		rr/=s; gg/=s; bb/=s; aa/=s;		if (rr>255) rr=255; if (rr<0) rr=0; color.rgbRed=(BYTE) rr;		if (gg>255) gg=255; if (gg<0) gg=0; color.rgbGreen=(BYTE) gg;		if (bb>255) bb=255; if (bb<0) bb=0; color.rgbBlue=(BYTE) bb;#if CXIMAGE_SUPPORT_ALPHA		if (AlphaIsValid()) {			if (aa>255) aa=255; if (aa<0) aa=0; color.rgbReserved=(BYTE) aa;		}//if#endif	}//if	return color;}////////////////////////////////////////////////////////////////////////////////float CxImage::KernelBSpline(const float x){	if (x>2.0f) return 0.0f;	// thanks to Kristian Kratzenstein	float a, b, c, d;	float xm1 = x - 1.0f; // Was calculatet anyway cause the "if((x-1.0f) < 0)"	float xp1 = x + 1.0f;	float xp2 = x + 2.0f;	if ((xp2) <= 0.0f) a = 0.0f; else a = xp2*xp2*xp2; // Only float, not float -> double -> float	if ((xp1) <= 0.0f) b = 0.0f; else b = xp1*xp1*xp1;	if (x <= 0) c = 0.0f; else c = x*x*x;  	if ((xm1) <= 0.0f) d = 0.0f; else d = xm1*xm1*xm1;	return (0.16666666666666666667f * (a - (4.0f * b) + (6.0f * c) - (4.0f * d)));	/* equivalent <Vladim韗 Kloucek>	if (x < -2.0)		return(0.0f);	if (x < -1.0)		return((2.0f+x)*(2.0f+x)*(2.0f+x)*0.16666666666666666667f);	if (x < 0.0)		return((4.0f+x*x*(-6.0f-3.0f*x))*0.16666666666666666667f);	if (x < 1.0)		return((4.0f+x*x*(-6.0f+3.0f*x))*0.16666666666666666667f);	if (x < 2.0)		return((2.0f-x)*(2.0f-x)*(2.0f-x)*0.16666666666666666667f);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -