📄 flch11eg3.m
字号:
clc
ps1=[0.0444]'*1e10;
ps2=[0.0414]'*1e10;
ps3=[0.0413]'*1e10;
ps4=[0.6909]';
po1=[1.1430]'*1e16;
po2=[2.3228]'*1e15;
po3=[2.0379]'*1e15;
po4=[2.2893]'*1e15;
P=[ps1 ps2 ps3 ps4 po1 po2 po3 po4];
T=[0 0 0 0 10 10 10 10];
%创建一个新的前向神经网络
net=newff(minmax(P),[20,1],{'tansig','purelin'},'trainlm');
%当前输入层权值和阈值
inputWeights=net.IW{1,1};
inputbias=net.b{1};
%当前网络层权值和阈值
layerWeights=net.LW{2,1};
layerbias=net.b{2};
%设置训练参数
net.trainParam.show=50;
net.trainParam.lr=0.05;
net.trainParam.mc=0.9;
net.trainParam.epochs=1000;
net.trainParam.goal=1e-5;
%调用TRAINGDM训练网络
[net,tr]=train(net,P,T);
%对网络进行仿真
A=sim(net,P);
figure(1);
plot(A,'r+');
grid;
pps1=[0.0445]*1e9;
pps2=[0.0414]*1e9;
pps3=[0.0413]*1e9;
pps4=[0.1084];
ppo1=[2.4198]*1e15;
ppo2=[7.6567]*1e14;
ppo3=[3.9659]*1e14;
ppo4=[4.0317]*1e14;
p=[pps1 pps2 pps3 pps4 ppo1 ppo2 ppo3 ppo4];
a=sim(net,p);
hold on
plot(a,'bo');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -