⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 circle.m

📁 五点差分型多重网格方法:各种插值算子的比较)
💻 M
字号:
function circle% CIRCLE simulates adaptive grids for a problem with moving circlular% singularities.%% L. Chen & C. Zhang 11-15-2006%--------------------------------------------------------------------------% Initialize Figure Window%--------------------------------------------------------------------------figure(1); set(gcf,'Units','normal'); set(gcf,'Position',[0.02,0.1,0.8,0.6]);%--------------------------------------------------------------------------% Parameters%--------------------------------------------------------------------------theta = 0.3; theta_c = 0.1; t0 = 1.1; %--------------------------------------------------------------------------% PreStep 0: generate initial mesh%--------------------------------------------------------------------------node = [-1,-1; 0,-1; 1,-1; -1,0; 0,0; 1,0; -1,1; 0,1; 1,1];elem = [2,5,1; 3,6,2; 4,1,5; 5,2,6; 5,8,4; 7,4,8; 6,9,5; 8,5,9];Dirichlet = []; Neumann = [];mesh = getmesh(node,elem,Dirichlet,Neumann);%--------------------------------------------------------------------------% PreStep 1: uniform mesh refinement%--------------------------------------------------------------------------for i=1:4    mesh = bisection(mesh,ones(size(mesh.elem,1),1),1);endmesh.solu = u(mesh.node,t0); % now we pretent we know exact solution%--------------------------------------------------------------------------% PreStep 2: mesh refinement of initial data%--------------------------------------------------------------------------for i=1:6    eta = estimate(mesh);    [mesh,eta] = bisection(mesh,eta.^2,theta);end%--------------------------------------------------------------------------% AFEM%--------------------------------------------------------------------------for t = t0:-0.1:0.25        % Coarsen    for i = 1:5,        mesh.solu = u(mesh.node,t); % now we pretent we know exact solution        eta = estimate(mesh).^2;        [mesh,eta] = coarsening(mesh,eta,theta_c);    end    % Refine    for i = 1:5,        mesh.solu = u(mesh.node,t); % now we pretent we know exact solution        eta = estimate(mesh).^2;        [mesh,eta] = bisection(mesh,eta,theta);    end    mesh.solu = u(mesh.node,t);    % Graphic representation      subplot(1,2,2); hold off;     trisurf(mesh.elem,mesh.node(:,1),mesh.node(:,2),zeros(size(mesh.node,1),1));    view(2), axis equal, axis off;    title(sprintf('Mesh at time %5.4f',t), 'FontSize', 14)    subplot(1,2,1); hold off;    trisurf(mesh.elem, mesh.node(:,1), mesh.node(:,2), mesh.solu', ...        'FaceColor', 'interp', 'EdgeColor', 'interp');    view(60,50), axis equal, axis off;    title('Solution to the circle problem', 'FontSize', 14)    pause(0.2)   endmesh%--------------------------------------------------------------------------% End of function CIRCLE%--------------------------------------------------------------------------%--------------------------------------------------------------------------% Sub functions called by CIRCLE%--------------------------------------------------------------------------function z = u(p,t) % exact solution%% NOTE%    Singularities is on a moving circle%% epsilon is the width of circleepsilon = 0.05;r = max(sum(p.^2,2).^(1/2),eps);z = exp(-((r-0.5*t)/epsilon).^2);%--------------------------------------------------------------------------

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -