📄 poisson.m
字号:
function [u, energy] = Poisson(mesh, f, g_D, g_N)% POISSON solve the 2-D Poisson equation % -\Delta u = f, % in the current mesh with boundary conditions% u = g_D on the Dirichelet boundary % du/dn = g_N on the Neumann boundary %% USAGE% [u] = Poisson(mesh, f, g_D, g_N)% [u, energy] = Poisson(mesh, f, g_D, g_N)%% INPUT % mesh: current mesh% f: right side or data% g_D: Dirichelet condition% g_N: Neumann condition%% OUTPUT% u: solution on the current mesh% energy:energy of the discrete solution u%% REFERENCE% Jochen Alberty, Carsten Carstensen, Stefan Funken,% Remarks Around 50 Lines of MATLAB: Short Finite Element Implementation% Numerical Algorithms, Volume 20, pages 117-137, 1999.%% NOTE% It is optimized using vectorizing lauange to avoid for loops%% L. Chen & C. Zhang 11-15-2006%--------------------------------------------------------------------------% Initialize the data %--------------------------------------------------------------------------N = size(mesh.node,1);A = sparse(N,N); u = zeros(N,1); %--------------------------------------------------------------------------% Compute vedge: edge as a vector and area of each element%--------------------------------------------------------------------------ve(:,:,1) = mesh.node(mesh.elem(:,3),:)-mesh.node(mesh.elem(:,2),:);ve(:,:,2) = mesh.node(mesh.elem(:,1),:)-mesh.node(mesh.elem(:,3),:);ve(:,:,3) = mesh.node(mesh.elem(:,2),:)-mesh.node(mesh.elem(:,1),:);area = 0.5*abs(-ve(:,1,3).*ve(:,2,2)+ve(:,2,3).*ve(:,1,2));%--------------------------------------------------------------------------% Assemble Stiffness matrix%--------------------------------------------------------------------------for i = 1:3 for j = 1:3 % Aij = \int_T grad u_i * grad u_j Aij = (ve(:,1,i).*ve(:,1,j)+ve(:,2,i).*ve(:,2,j))./(4*area); A = A + sparse(mesh.elem(:,i),mesh.elem(:,j),Aij,N,N); endend% More readable code is% for j = 1 : NT% A(elem(j,:),elem(j,:)) = A(elem(j,:),elem(j,:)) ...% + localstiffness(node(elem(j,:),:));% end% with localstiffness is a function to compute lcoal stiffness matrix.% To avoide loop for large NT, we use 'sparse' command here.%--------------------------------------------------------------------------% Assemble Mass matrix%--------------------------------------------------------------------------M = sparse(mesh.elem(:,[1,1,1,2,2,2,3,3,3]), ... mesh.elem(:,[1,2,3,1,2,3,1,2,3]), ... area*[2,1,1,1,2,1,1,1,2]/12, N, N);%--------------------------------------------------------------------------% More readable code is% for j = 1 : NT% M(elem(j,:),elem(j,:)) = area(j)/12*[2,1,1;% 1,2,1;% 1,1,2];% end% To avoide loop for large NT, we use 'sparse' command here.% It is also very neat, by the way.%--------------------------------------------------------------------------%--------------------------------------------------------------------------% Assemble right-hand-side%--------------------------------------------------------------------------b = M*feval(f,mesh.node);% feval(f,mesh.node) is the nodal interpolation of f_I and M*f_I gives the% right side. It is equivalent to the middle point rule%--------------------------------------------------------------------------% Neumann boundary conditions%--------------------------------------------------------------------------if (~isempty(mesh.Neumann)) bdEdge = mesh.node(mesh.Neumann(:,1),:) ... - mesh.node(mesh.Neumann(:,2),:); d = sqrt(sum(bdEdge.^2,2)); mid = (mesh.node(mesh.Neumann(:,1),:) ... + mesh.node(mesh.Neumann(:,2),:))/2; b = b + sparse(mesh.Neumann, ... ones(size(mesh.Neumann,1),2),d.*g_N(mid)/2*[1,1],N,1); end%--------------------------------------------------------------------------% Dirichlet boundary conditions%--------------------------------------------------------------------------bdNode = unique(mesh.Dirichlet);u(bdNode) = feval(g_D,mesh.node(bdNode,:));b = b - A * u; % adjust the right hand side%--------------------------------------------------------------------------% Solve the linear system A * U = B for the free nodes%--------------------------------------------------------------------------freeNode = find(mesh.type>0); freeNode = setdiff(freeNode, bdNode);if size(freeNode)>0 u(freeNode) = A(freeNode, freeNode) \ b(freeNode);end%--------------------------------------------------------------------------% Compute the energy of u%--------------------------------------------------------------------------if (nargout > 1) energy = full(0.5*u'*(A*u)- u'*M*feval(f,mesh.node));end % otherwise do not need to compute the discrete energy%--------------------------------------------------------------------------% end of function POISSON%--------------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -