📄 bisection.m
字号:
function [mesh,eta] = bisection(mesh,eta,theta)% BISECTION refines the triangulation using newest vertex bisection%% USAGE% [mesh,eta] = bisection(mesh,eta,theta)%% INPUT % mesh: current mesh% eta: error indicator for each triangle% theta: parameter in (0,1). % We mark minimal number of triangles M such that% \sum_{T \in M} \eta_T > \theta*\sum\eta_T%% OUTPUT% mesh: new mesh after refinement% eta: new error indicator for each triangle%% REFERENCE% Long Chen,% Short bisection implementation in MATLAB% Research Notes, 2006 %% L. Chen & C. Zhang 11-12-2006%--------------------------------------------------------------------------% Construct data structure%--------------------------------------------------------------------------edge = [mesh.elem(:,[1,2]); mesh.elem(:,[1,3]); mesh.elem(:,[2,3])];edge = unique(sort(edge,2),'rows');N = size(mesh.node,1);NT = size(mesh.elem,1); NE = size(edge,1);dualEdge = sparse(mesh.elem(:,[1,2,3]),mesh.elem(:,[2,3,1]),[1:NT,1:NT,1:NT]);d2p = sparse(edge(:,[1,2]),edge(:,[2,1]),[1:NE,1:NE]);% Detailed explanation can be founded at% Manual --> Data Structure --> Auxlliary data structure %--------------------------------------------------------------------------% Meomery management for node arrary%--------------------------------------------------------------------------recycle = find(mesh.type==0); last = length(recycle);% Coarsening can create empty spaces in the node array. We collect those% scattered spaces in recycle arrary and 'last' will point out the last% empty node index. % mesh.type array is used to distinguish the type of nodes:% 0: empty nodes (deleted by coarsening);% 1: nodes in the initial triangulation or nodes from regular refinement;% 2: new added nodes due to refinement;% 5: temporay node (will be deleted when bisection finished).%--------------------------------------------------------------------------% Mark triangles according to the error indicator%--------------------------------------------------------------------------total = sum(eta); current = 0; [temp,ix] = sort(-eta); % sort in descent ordermarker = zeros(NE,1); % initialize for possible new nodesmesh.node = [mesh.node; zeros(NE,2)];mesh.type = [mesh.type; uint8(5*ones(NE,1))];mesh.solu = [mesh.solu; zeros(NE,1)];for t = 1:NT if (current > theta*total), break; end % est on marked elem big enough index = 1; ct = ix(t); while (index==1) base = d2p(mesh.elem(ct,2),mesh.elem(ct,3)); if (marker(base)>0) % base is already marked index = 0; else current = current + eta(ct); if (last==0) newNode = N + 1; N = N+1; end if (last>0) newNode = recycle(last); last = last-1; end marker( d2p(mesh.elem(ct,2),mesh.elem(ct,3)) ) = newNode; % A new node is added to the mesh. Numerical solution at this % new added node is approximated by linear interpolation. Type % of this node is 2 (generated by newest vertex bisection) mesh.node(newNode,:) = ( mesh.node(mesh.elem(ct,2),:) + ... mesh.node(mesh.elem(ct,3),:) )/2; mesh.solu(newNode) = ( mesh.solu(mesh.elem(ct,2)) + ... mesh.solu(mesh.elem(ct,3)) )/2; mesh.type(newNode) = 2; % Find the element which shares the base edge of the current % element. If it is 0, it means the base of the current element % is on the boundary. ct = dualEdge( mesh.elem(ct,3), mesh.elem(ct,2) ); if ( ct == 0 ), index = 0; end % the while will ended if % 1. ct==0 means we are on the boundary % 2. base(ct) is already marked end end % end while for recursive markingend % end of for loop on all elements% Detailed explanation of the algorithm can be found at% Manual --> Algorithms --> Bisection% delete possible empty entriesix = (mesh.type == 5); mesh.node(ix,:) = []; mesh.type(ix) = [];mesh.solu(ix) = [];%--------------------------------------------------------------------------% Refine marked edges for each triangle%--------------------------------------------------------------------------numnew = 2*sum(marker~=0); % number of new elements need to be addedmesh.elem = [mesh.elem; zeros(numnew,3)];eta = [eta; zeros(numnew,1)];inew = NT + 1; % index for current new added right childfor t = 1:NT base = d2p(mesh.elem(t,2),mesh.elem(t,3)); if (marker(base)>0) p = [mesh.elem(t,:), marker(base)]; % Case 1: divide the current marked triangle mesh.elem(t,:) = [p(4),p(1),p(2)]; % t is always a left child mesh.elem(inew,:) = [p(4),p(3),p(1)]; % new is a right child eta(t) = eta(t)/2; % update error indicators eta(inew) = eta(t); inew = inew + 1; % Case 2: divide the right child, different, careful!!! right = d2p(p(3),p(1)); if (marker(right)>0) mesh.elem(inew-1,:) = [marker(right),p(4),p(3)]; mesh.elem(inew,:) = [marker(right),p(1),p(4)]; eta(inew-1) = eta(inew-1)/2; eta(inew) = eta(inew-1); inew = inew + 1; end % Case 3: divide the left child, similar to the case 1. left = d2p(p(1),p(2)); if (marker(left)>0) mesh.elem(t,:) = [marker(left),p(4),p(1)]; mesh.elem(inew,:) = [marker(left),p(2),p(4)]; eta(t) = eta(t)/2; eta(inew) = eta(t); inew = inew + 1; end end % end of refinement of one elementend % end of for loop on all elements% delete possible empty entriesmesh.elem = mesh.elem(1:inew-1,:);eta = eta(1:inew-1,:);%--------------------------------------------------------------------------% Update boundary edges%--------------------------------------------------------------------------mesh.Dirichlet = updatebd(mesh.Dirichlet,marker,d2p);mesh.Neumann = updatebd(mesh.Neumann,marker,d2p);%--------------------------------------------------------------------------% End of function BISECTION%--------------------------------------------------------------------------%--------------------------------------------------------------------------% Sub functions called by BISECTION%--------------------------------------------------------------------------function bdEdge = updatebd(bdEdge,marker,d2p)% UPDATEDBD refine the boundary edges%% USAGE% bdEdge = updatebd(bdEdge,marker,d2p)%% INPUT% bdEdge: set of boundary edges% marker: new node index for marked edge% d2p: index mapping from dual edge to primary edge% % OUTPUT% bdEdge: set of refined boundary edges%NB = size(bdEdge,1);for k = 1:NB i = bdEdge(k,1); j = bdEdge(k,2); if marker(d2p(i,j)) >0 bdEdge(k,:) = [i,marker(d2p(i,j))]; bdEdge(size(bdEdge,1)+1,:) = [marker(d2p(i,j)),j]; endend%--------------------------------------------------------------------------% End of function UPDATEDBD%--------------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -