📄 perceptron_fm.m
字号:
function [test_targets, a] = Perceptron_FM(train_patterns, train_targets, test_patterns, params)
% Classify using the Perceptron algorithm but at each iteration updating the worst-classified sample
% Inputs:
% train_patterns - Train patterns
% train_targets - Train targets
% test_patterns - Test patterns
% params - [Maximum number of iterations, slack]
%
% Outputs
% test_targets - Predicted targets
% a - Perceptron weights
%
% NOTE: Works for only two classes.
[max_iter, slack] = process_params(params);
rate = 0.1;
[c, r] = size(train_patterns);
xi = ones(1,r)/r*slack;
if (length(unique(train_targets)) == 2)
train_targets = train_targets > 0;
end
train_patterns = [train_patterns ; ones(1,r)];
train_zero = find(train_targets == 0);
%Preprocessing
y = train_patterns;
y(:,train_zero)= -y(:,train_zero);
%Initial weights
a = sum(y')';
n = length(train_targets);
iter = 0;
while ((sum(a'*train_patterns.*(2*train_targets-1)<0)>0) & (iter < max_iter))
iter = iter + 1;
%Find worst-classified sample
A = a'*train_patterns.*(2*train_targets-1)+xi;
[m, indice] = min(A);
if (a' * y(:,indice) <= 0)
a = a + y(:,indice);
end
%Calculate the new slack vector
xi(indice) = xi(indice) + rate;
xi = xi / sum(xi) * slack;
end
if (iter == max_iter),
disp(['Maximum iteration (' num2str(max_iter) ') reached']);
end
%Classify test patterns
test_targets = a'*[test_patterns; ones(1, size(test_patterns,2))] > 0;
a = a';
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -