📄 atomic.c
字号:
/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */#include <cutils/atomic.h>#ifdef HAVE_WIN32_THREADS#include <windows.h>#else#include <sched.h>#endif/*****************************************************************************/#if defined(HAVE_MACOSX_IPC)#include <libkern/OSAtomic.h>void android_atomic_write(int32_t value, volatile int32_t* addr) { int32_t oldValue; do { oldValue = *addr; } while (OSAtomicCompareAndSwap32Barrier(oldValue, value, (int32_t*)addr) == 0);}int32_t android_atomic_inc(volatile int32_t* addr) { return OSAtomicIncrement32Barrier((int32_t*)addr)-1;}int32_t android_atomic_dec(volatile int32_t* addr) { return OSAtomicDecrement32Barrier((int32_t*)addr)+1;}int32_t android_atomic_add(int32_t value, volatile int32_t* addr) { return OSAtomicAdd32Barrier(value, (int32_t*)addr)-value;}int32_t android_atomic_and(int32_t value, volatile int32_t* addr) { int32_t oldValue; do { oldValue = *addr; } while (OSAtomicCompareAndSwap32Barrier(oldValue, oldValue&value, (int32_t*)addr) == 0); return oldValue;}int32_t android_atomic_or(int32_t value, volatile int32_t* addr) { int32_t oldValue; do { oldValue = *addr; } while (OSAtomicCompareAndSwap32Barrier(oldValue, oldValue|value, (int32_t*)addr) == 0); return oldValue;}int32_t android_atomic_swap(int32_t value, volatile int32_t* addr) { int32_t oldValue; do { oldValue = *addr; } while (android_atomic_cmpxchg(oldValue, value, addr)); return oldValue;}int android_atomic_cmpxchg(int32_t oldvalue, int32_t newvalue, volatile int32_t* addr) { return OSAtomicCompareAndSwap32Barrier(oldvalue, newvalue, (int32_t*)addr) == 0;}#if defined(__ppc__) \ || defined(__PPC__) \ || defined(__powerpc__) \ || defined(__powerpc) \ || defined(__POWERPC__) \ || defined(_M_PPC) \ || defined(__PPC)#define NEED_QUASIATOMICS 1#elseint android_quasiatomic_cmpxchg_64(int64_t oldvalue, int64_t newvalue, volatile int64_t* addr) { return OSAtomicCompareAndSwap64Barrier(oldvalue, newvalue, (int64_t*)addr) == 0;}int64_t android_quasiatomic_swap_64(int64_t value, volatile int64_t* addr) { int64_t oldValue; do { oldValue = *addr; } while (android_quasiatomic_cmpxchg_64(oldValue, value, addr)); return oldValue;}int64_t android_quasiatomic_read_64(volatile int64_t* addr) { return OSAtomicAdd64Barrier(0, addr);} #endif/*****************************************************************************/#elif defined(__i386__) || defined(__x86_64__)void android_atomic_write(int32_t value, volatile int32_t* addr) { int32_t oldValue; do { oldValue = *addr; } while (android_atomic_cmpxchg(oldValue, value, addr));}int32_t android_atomic_inc(volatile int32_t* addr) { int32_t oldValue; do { oldValue = *addr; } while (android_atomic_cmpxchg(oldValue, oldValue+1, addr)); return oldValue;}int32_t android_atomic_dec(volatile int32_t* addr) { int32_t oldValue; do { oldValue = *addr; } while (android_atomic_cmpxchg(oldValue, oldValue-1, addr)); return oldValue;}int32_t android_atomic_add(int32_t value, volatile int32_t* addr) { int32_t oldValue; do { oldValue = *addr; } while (android_atomic_cmpxchg(oldValue, oldValue+value, addr)); return oldValue;}int32_t android_atomic_and(int32_t value, volatile int32_t* addr) { int32_t oldValue; do { oldValue = *addr; } while (android_atomic_cmpxchg(oldValue, oldValue&value, addr)); return oldValue;}int32_t android_atomic_or(int32_t value, volatile int32_t* addr) { int32_t oldValue; do { oldValue = *addr; } while (android_atomic_cmpxchg(oldValue, oldValue|value, addr)); return oldValue;}int32_t android_atomic_swap(int32_t value, volatile int32_t* addr) { int32_t oldValue; do { oldValue = *addr; } while (android_atomic_cmpxchg(oldValue, value, addr)); return oldValue;}int android_atomic_cmpxchg(int32_t oldvalue, int32_t newvalue, volatile int32_t* addr) { int xchg; asm volatile ( " lock; cmpxchg %%ecx, (%%edx);" " setne %%al;" " andl $1, %%eax" : "=a" (xchg) : "a" (oldvalue), "c" (newvalue), "d" (addr) ); return xchg;}#define NEED_QUASIATOMICS 1/*****************************************************************************/#elif __arm__// Most of the implementation is in atomic-android-arm.s.// on the device, we implement the 64-bit atomic operations through// mutex locking. normally, this is bad because we must initialize// a pthread_mutex_t before being able to use it, and this means// having to do an initialization check on each function call, and// that's where really ugly things begin...//// BUT, as a special twist, we take advantage of the fact that in our// pthread library, a mutex is simply a volatile word whose value is always// initialized to 0. In other words, simply declaring a static mutex// object initializes it !//// another twist is that we use a small array of mutexes to dispatch// the contention locks from different memory addresses//#include <pthread.h>#define SWAP_LOCK_COUNT 32Ustatic pthread_mutex_t _swap_locks[SWAP_LOCK_COUNT];#define SWAP_LOCK(addr) \ &_swap_locks[((unsigned)(void*)(addr) >> 3U) % SWAP_LOCK_COUNT]int64_t android_quasiatomic_swap_64(int64_t value, volatile int64_t* addr) { int64_t oldValue; pthread_mutex_t* lock = SWAP_LOCK(addr); pthread_mutex_lock(lock); oldValue = *addr; *addr = value; pthread_mutex_unlock(lock); return oldValue;}int android_quasiatomic_cmpxchg_64(int64_t oldvalue, int64_t newvalue, volatile int64_t* addr) { int result; pthread_mutex_t* lock = SWAP_LOCK(addr); pthread_mutex_lock(lock); if (*addr == oldvalue) { *addr = newvalue; result = 0; } else { result = 1; } pthread_mutex_unlock(lock); return result;}int64_t android_quasiatomic_read_64(volatile int64_t* addr) { int64_t result; pthread_mutex_t* lock = SWAP_LOCK(addr); pthread_mutex_lock(lock); result = *addr; pthread_mutex_unlock(lock); return result;} #else#error "Unsupported atomic operations for this platform"#endif#if NEED_QUASIATOMICS/* Note that a spinlock is *not* a good idea in general * since they can introduce subtle issues. For example, * a real-time thread trying to acquire a spinlock already * acquired by another thread will never yeld, making the * CPU loop endlessly! * * However, this code is only used on the Linux simulator * so it's probably ok for us. * * The alternative is to use a pthread mutex, but * these must be initialized before being used, and * then you have the problem of lazily initializing * a mutex without any other synchronization primitive. *//* global spinlock for all 64-bit quasiatomic operations */static int32_t quasiatomic_spinlock = 0;int android_quasiatomic_cmpxchg_64(int64_t oldvalue, int64_t newvalue, volatile int64_t* addr) { int result; while (android_atomic_cmpxchg(0, 1, &quasiatomic_spinlock)) {#ifdef HAVE_WIN32_THREADS Sleep(0);#else sched_yield();#endif } if (*addr == oldvalue) { *addr = newvalue; result = 0; } else { result = 1; } android_atomic_swap(0, &quasiatomic_spinlock); return result;}int64_t android_quasiatomic_read_64(volatile int64_t* addr) { int64_t result; while (android_atomic_cmpxchg(0, 1, &quasiatomic_spinlock)) {#ifdef HAVE_WIN32_THREADS Sleep(0);#else sched_yield();#endif } result = *addr; android_atomic_swap(0, &quasiatomic_spinlock); return result;}int64_t android_quasiatomic_swap_64(int64_t value, volatile int64_t* addr) { int64_t result; while (android_atomic_cmpxchg(0, 1, &quasiatomic_spinlock)) {#ifdef HAVE_WIN32_THREADS Sleep(0);#else sched_yield();#endif } result = *addr; *addr = value; android_atomic_swap(0, &quasiatomic_spinlock); return result;}#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -