⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fixed.cpp

📁 Android 一些工具
💻 CPP
字号:
/* libs/pixelflinger/fixed.cpp**** Copyright 2006, The Android Open Source Project**** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ****     http://www.apache.org/licenses/LICENSE-2.0 **** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License.*/#include <stdio.h>#include <private/pixelflinger/ggl_context.h>#include <private/pixelflinger/ggl_fixed.h>// ------------------------------------------------------------------------int32_t gglRecipQNormalized(int32_t x, int* exponent){    const int32_t s = x>>31;    uint32_t a = s ? -x : x;    // the result will overflow, so just set it to the biggest/inf value    if (ggl_unlikely(a <= 2LU)) {        *exponent = 0;        return s ? FIXED_MIN : FIXED_MAX;    }    // Newton-Raphson iteration:    // x = r*(2 - a*r)    const int32_t lz = gglClz(a);    a <<= lz;  // 0.32    uint32_t r = a;    // note: if a == 0x80000000, this means x was a power-of-2, in this    // case we don't need to compute anything. We get the reciprocal for    // (almost) free.    if (a != 0x80000000) {        r = (0x2E800 << (30-16)) - (r>>(2-1)); // 2.30, r = 2.90625 - 2*a        // 0.32 + 2.30 = 2.62 -> 2.30        // 2.30 + 2.30 = 4.60 -> 2.30        r = (((2LU<<30) - uint32_t((uint64_t(a)*r) >> 32)) * uint64_t(r)) >> 30;        r = (((2LU<<30) - uint32_t((uint64_t(a)*r) >> 32)) * uint64_t(r)) >> 30;    }    // shift right 1-bit to make room for the sign bit    *exponent = 30-lz-1;    r >>= 1;    return s ? -r : r;}int32_t gglRecipQ(GGLfixed x, int q){    int shift;    x = gglRecipQNormalized(x, &shift);    shift += 16-q;    x += 1L << (shift-1);   // rounding    x >>= shift;    return x;}    // ------------------------------------------------------------------------GGLfixed gglFastDivx(GGLfixed n, GGLfixed d){    if ((d>>24) && ((d>>24)+1)) {        n >>= 8;        d >>= 8;    }    return gglMulx(n, gglRecip(d));}// ------------------------------------------------------------------------static const GGLfixed ggl_sqrt_reciproc_approx_tab[8] = {    // 1/sqrt(x) with x = 1-N/16, N=[8...1]    0x16A09, 0x15555, 0x143D1, 0x134BF, 0x1279A, 0x11C01, 0x111AC, 0x10865};GGLfixed gglSqrtRecipx(GGLfixed x){    if (x == 0)         return FIXED_MAX;    if (x == FIXED_ONE) return x;    const GGLfixed a = x;    const int32_t lz = gglClz(x);    x = ggl_sqrt_reciproc_approx_tab[(a>>(28-lz))&0x7];    const int32_t exp = lz - 16;    if (exp <= 0)   x >>= -exp>>1;    else            x <<= (exp>>1) + (exp & 1);            if (exp & 1) {        x = gglMulx(x, ggl_sqrt_reciproc_approx_tab[0])>>1;    }    // 2 Newton-Raphson iterations: x = x/2*(3-(a*x)*x)    x = gglMulx((x>>1),(0x30000 - gglMulx(gglMulx(a,x),x)));    x = gglMulx((x>>1),(0x30000 - gglMulx(gglMulx(a,x),x)));    return x;}GGLfixed gglSqrtx(GGLfixed a){    // Compute a full precision square-root (24 bits accuracy)    GGLfixed r = 0;    GGLfixed bit = 0x800000;    int32_t bshift = 15;    do {        GGLfixed temp = bit + (r<<1);        if (bshift >= 8)    temp <<= (bshift-8);        else                temp >>= (8-bshift);        if (a >= temp) {            r += bit;            a -= temp;        }        bshift--;    } while (bit>>=1);    return r;}// ------------------------------------------------------------------------static const GGLfixed ggl_log_approx_tab[] = {    // -ln(x)/ln(2) with x = N/16, N=[8...16]    0xFFFF, 0xd47f, 0xad96, 0x8a62, 0x6a3f, 0x4caf, 0x3151, 0x17d6, 0x0000};static const GGLfixed ggl_alog_approx_tab[] = { // domain [0 - 1.0]	0xffff, 0xeac0, 0xd744, 0xc567, 0xb504, 0xa5fe, 0x9837, 0x8b95, 0x8000};GGLfixed gglPowx(GGLfixed x, GGLfixed y){    // prerequisite: 0 <= x <= 1, and y >=0    // pow(x,y) = 2^(y*log2(x))    // =  2^(y*log2(x*(2^exp)*(2^-exp))))    // =  2^(y*(log2(X)-exp))    // =  2^(log2(X)*y - y*exp)    // =  2^( - (-log2(X)*y + y*exp) )        int32_t exp = gglClz(x) - 16;    GGLfixed f = x << exp;    x = (f & 0x0FFF)<<4;    f = (f >> 12) & 0x7;    GGLfixed p = gglMulAddx(            ggl_log_approx_tab[f+1] - ggl_log_approx_tab[f], x,            ggl_log_approx_tab[f]);    p = gglMulAddx(p, y, y*exp);    exp = gglFixedToIntFloor(p);    if (exp < 31) {        p = gglFracx(p);        x = (p & 0x1FFF)<<3;        p >>= 13;            p = gglMulAddx(                ggl_alog_approx_tab[p+1] - ggl_alog_approx_tab[p], x,                ggl_alog_approx_tab[p]);        p >>= exp;    } else {        p = 0;    }    return p;        // ( powf((a*65536.0f), (b*65536.0f)) ) * 65536.0f;}// ------------------------------------------------------------------------int32_t gglDivQ(GGLfixed n, GGLfixed d, int32_t i){    //int32_t r =int32_t((int64_t(n)<<i)/d);    const int32_t ds = n^d;    if (n<0) n = -n;    if (d<0) d = -d;    int nd = gglClz(d) - gglClz(n);    i += nd + 1;    if (nd > 0) d <<= nd;    else        n <<= -nd;    uint32_t q = 0;    int j = i & 7;    i >>= 3;    // gcc deals with the code below pretty well.    // we get 3.75 cycles per bit in the main loop    // and 8 cycles per bit in the termination loop    if (ggl_likely(i)) {        n -= d;        do {            q <<= 8;            if (n>=0)   q |= 128;            else        n += d;            n = n*2 - d;            if (n>=0)   q |= 64;            else        n += d;            n = n*2 - d;            if (n>=0)   q |= 32;            else        n += d;            n = n*2 - d;            if (n>=0)   q |= 16;            else        n += d;            n = n*2 - d;            if (n>=0)   q |= 8;            else        n += d;            n = n*2 - d;            if (n>=0)   q |= 4;            else        n += d;            n = n*2 - d;            if (n>=0)   q |= 2;            else        n += d;            n = n*2 - d;            if (n>=0)   q |= 1;            else        n += d;                        if (--i == 0)                goto finish;            n = n*2 - d;        } while(true);        do {            q <<= 1;            n = n*2 - d;            if (n>=0)   q |= 1;            else        n += d;        finish: ;        } while (j--);        return (ds<0) ? -q : q;    }    n -= d;    if (n>=0)   q |= 1;    else        n += d;    j--;    goto finish;}// ------------------------------------------------------------------------// assumes that the int32_t values of a, b, and c are all positive// use when both a and b are larger than ctemplate <typename T>static inline void swap(T& a, T& b) {    T t(a);    a = b;    b = t;}static __attribute__((noinline))int32_t slow_muldiv(uint32_t a, uint32_t b, uint32_t c){	// first we compute a*b as a 64-bit integer    // (GCC generates umull with the code below)    uint64_t ab = uint64_t(a)*b;    uint32_t hi = ab>>32;    uint32_t lo = ab;    uint32_t result;	// now perform the division	if (hi >= c) {	overflow:		result = 0x7fffffff;  // basic overflow	} else if (hi == 0) {		result = lo/c;  // note: c can't be 0		if ((result >> 31) != 0)  // result must fit in 31 bits			goto overflow;	} else {		uint32_t r = hi;		int bits = 31;	    result = 0;		do {			r = (r << 1) | (lo >> 31);			lo <<= 1;			result <<= 1;			if (r >= c) {				r -= c;				result |= 1;			}		} while (bits--);	}	return int32_t(result);}// assumes a >= 0 and c >= b >= 0static inlineint32_t quick_muldiv(int32_t a, int32_t b, int32_t c){    int32_t r = 0, q = 0, i;    int leading = gglClz(a);    i = 32 - leading;    a <<= leading;    do {        r <<= 1;        if (a < 0)            r += b;        a <<= 1;        q <<= 1;        if (r >= c) {            r -= c;            q++;        }        asm(""::); // gcc generates better code this way        if (r >= c) {            r -= c;            q++;        }    }    while (--i);    return q;}// this function computes a*b/c with 64-bit intermediate accuracy// overflows (e.g. division by 0) are handled and return INT_MAXint32_t gglMulDivi(int32_t a, int32_t b, int32_t c){	int32_t result;	int32_t sign = a^b^c;	if (a < 0) a = -a;	if (b < 0) b = -b;	if (c < 0) c = -c;    if (a < b) {        swap(a, b);    }    	if (b <= c) result = quick_muldiv(a, b, c);	else        result = slow_muldiv((uint32_t)a, (uint32_t)b, (uint32_t)c);		if (sign < 0)		result = -result;	      return result;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -