📄 blending.cpp
字号:
/* libs/pixelflinger/codeflinger/blending.cpp**** Copyright 2006, The Android Open Source Project**** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at **** http://www.apache.org/licenses/LICENSE-2.0 **** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License.*/#include <assert.h>#include <stdint.h>#include <stdlib.h>#include <stdio.h>#include <sys/types.h>#include <cutils/log.h>#include "codeflinger/GGLAssembler.h"namespace android {void GGLAssembler::build_fog( component_t& temp, // incomming fragment / output int component, Scratch& regs){ if (mInfo[component].fog) { Scratch scratches(registerFile()); comment("fog"); integer_t fragment(temp.reg, temp.h, temp.flags); if (!(temp.flags & CORRUPTIBLE)) { temp.reg = regs.obtain(); temp.flags |= CORRUPTIBLE; } integer_t fogColor(scratches.obtain(), 8, CORRUPTIBLE); LDRB(AL, fogColor.reg, mBuilderContext.Rctx, immed12_pre(GGL_OFFSETOF(state.fog.color[component]))); integer_t factor(scratches.obtain(), 16, CORRUPTIBLE); CONTEXT_LOAD(factor.reg, generated_vars.f); build_blendFOneMinusF(temp, factor, fragment, fogColor); }}void GGLAssembler::build_blending( component_t& temp, // incomming fragment / output const pixel_t& pixel, // framebuffer int component, Scratch& regs){ if (!mInfo[component].blend) return; int fs = component==GGLFormat::ALPHA ? mBlendSrcA : mBlendSrc; int fd = component==GGLFormat::ALPHA ? mBlendDstA : mBlendDst; if (fs==GGL_SRC_ALPHA_SATURATE && component==GGLFormat::ALPHA) fs = GGL_ONE; const int blending = blending_codes(fs, fd); if (!temp.size()) { // here, blending will produce something which doesn't depend on // that component (eg: GL_ZERO:GL_*), so the register has not been // allocated yet. Will never be used as a source. temp = component_t(regs.obtain(), CORRUPTIBLE); } // we are doing real blending... // fb: extracted dst // fragment: extracted src // temp: component_t(fragment) and result // scoped register allocator Scratch scratches(registerFile()); comment("blending"); // we can optimize these cases a bit... // (1) saturation is not needed // (2) we can use only one multiply instead of 2 // (3) we can reduce the register pressure // R = S*f + D*(1-f) = (S-D)*f + D // R = S*(1-f) + D*f = (D-S)*f + S const bool same_factor_opt1 = (fs==GGL_DST_COLOR && fd==GGL_ONE_MINUS_DST_COLOR) || (fs==GGL_SRC_COLOR && fd==GGL_ONE_MINUS_SRC_COLOR) || (fs==GGL_DST_ALPHA && fd==GGL_ONE_MINUS_DST_ALPHA) || (fs==GGL_SRC_ALPHA && fd==GGL_ONE_MINUS_SRC_ALPHA); const bool same_factor_opt2 = (fs==GGL_ONE_MINUS_DST_COLOR && fd==GGL_DST_COLOR) || (fs==GGL_ONE_MINUS_SRC_COLOR && fd==GGL_SRC_COLOR) || (fs==GGL_ONE_MINUS_DST_ALPHA && fd==GGL_DST_ALPHA) || (fs==GGL_ONE_MINUS_SRC_ALPHA && fd==GGL_SRC_ALPHA); // XXX: we could also optimize these cases: // R = S*f + D*f = (S+D)*f // R = S*(1-f) + D*(1-f) = (S+D)*(1-f) // R = S*D + D*S = 2*S*D // see if we need to extract 'component' from the destination (fb) integer_t fb; if (blending & (BLEND_DST|FACTOR_DST)) { fb.setTo(scratches.obtain(), 32); extract(fb, pixel, component); if (mDithering) { // XXX: maybe what we should do instead, is simply // expand fb -or- fragment to the larger of the two if (fb.size() < temp.size()) { // for now we expand 'fb' to min(fragment, 8) int new_size = temp.size() < 8 ? temp.size() : 8; expand(fb, fb, new_size); } } } // convert input fragment to integer_t if (temp.l && (temp.flags & CORRUPTIBLE)) { MOV(AL, 0, temp.reg, reg_imm(temp.reg, LSR, temp.l)); temp.h -= temp.l; temp.l = 0; } integer_t fragment(temp.reg, temp.size(), temp.flags); // if not done yet, convert input fragment to integer_t if (temp.l) { // here we know temp is not CORRUPTIBLE fragment.reg = scratches.obtain(); MOV(AL, 0, fragment.reg, reg_imm(temp.reg, LSR, temp.l)); fragment.flags |= CORRUPTIBLE; } if (!(temp.flags & CORRUPTIBLE)) { // temp is not corruptible, but since it's the destination it // will be modified, so we need to allocate a new register. temp.reg = regs.obtain(); temp.flags &= ~CORRUPTIBLE; fragment.flags &= ~CORRUPTIBLE; } if ((blending & BLEND_SRC) && !same_factor_opt1) { // source (fragment) is needed for the blending stage // so it's not CORRUPTIBLE (unless we're doing same_factor_opt1) fragment.flags &= ~CORRUPTIBLE; } if (same_factor_opt1) { // R = S*f + D*(1-f) = (S-D)*f + D integer_t factor; build_blend_factor(factor, fs, component, pixel, fragment, fb, scratches); // fb is always corruptible from this point fb.flags |= CORRUPTIBLE; build_blendFOneMinusF(temp, factor, fragment, fb); } else if (same_factor_opt2) { // R = S*(1-f) + D*f = (D-S)*f + S integer_t factor; // fb is always corrruptible here fb.flags |= CORRUPTIBLE; build_blend_factor(factor, fd, component, pixel, fragment, fb, scratches); build_blendOneMinusFF(temp, factor, fragment, fb); } else { integer_t src_factor; integer_t dst_factor; // if destination (fb) is not needed for the blending stage, // then it can be marked as CORRUPTIBLE if (!(blending & BLEND_DST)) { fb.flags |= CORRUPTIBLE; } // XXX: try to mark some registers as CORRUPTIBLE // in most case we could make those corruptible // when we're processing the last component // but not always, for instance // when fragment is constant and not reloaded // when fb is needed for logic-ops or masking // when a register is aliased (for instance with mAlphaSource) // blend away... if (fs==GGL_ZERO) { if (fd==GGL_ZERO) { // R = 0 // already taken care of } else if (fd==GGL_ONE) { // R = D // already taken care of } else { // R = D*fd // compute fd build_blend_factor(dst_factor, fd, component, pixel, fragment, fb, scratches); mul_factor(temp, fb, dst_factor); } } else if (fs==GGL_ONE) { if (fd==GGL_ZERO) { // R = S // NOP, taken care of } else if (fd==GGL_ONE) { // R = S + D component_add(temp, fb, fragment); // args order matters component_sat(temp); } else { // R = S + D*fd // compute fd build_blend_factor(dst_factor, fd, component, pixel, fragment, fb, scratches); mul_factor_add(temp, fb, dst_factor, component_t(fragment)); if (fd==GGL_ONE_MINUS_SRC_ALPHA) { // XXX: in theory this is not correct, we should // saturate here. However, this mode is often // used for displaying alpha-premultiplied graphics, // in which case, saturation is not necessary. // unfortunatelly, we have no way to know. // This is a case, where we sacrifice correctness for // performance. we should probably have some heuristics. } else { component_sat(temp); } } } else { // compute fs build_blend_factor(src_factor, fs, component, pixel, fragment, fb, scratches); if (fd==GGL_ZERO) { // R = S*fs mul_factor(temp, fragment, src_factor); } else if (fd==GGL_ONE) { // R = S*fs + D mul_factor_add(temp, fragment, src_factor, component_t(fb)); component_sat(temp); } else { // R = S*fs + D*fd mul_factor(temp, fragment, src_factor); if (scratches.isUsed(src_factor.reg)) scratches.recycle(src_factor.reg); // compute fd build_blend_factor(dst_factor, fd, component, pixel, fragment, fb, scratches); mul_factor_add(temp, fb, dst_factor, temp); if (!same_factor_opt1 && !same_factor_opt2) { component_sat(temp); } } } } // now we can be corrupted (it's the dest) temp.flags |= CORRUPTIBLE;}void GGLAssembler::build_blend_factor( integer_t& factor, int f, int component, const pixel_t& dst_pixel, integer_t& fragment, integer_t& fb, Scratch& scratches){ integer_t src_alpha(fragment); // src_factor/dst_factor won't be used after blending, // so it's fine to mark them as CORRUPTIBLE (if not aliased) factor.flags |= CORRUPTIBLE; switch(f) { case GGL_ONE_MINUS_SRC_ALPHA: case GGL_SRC_ALPHA: if (component==GGLFormat::ALPHA && !isAlphaSourceNeeded()) { // we're processing alpha, so we already have // src-alpha in fragment, and we need src-alpha just this time. } else { // alpha-src will be needed for other components if (!mBlendFactorCached || mBlendFactorCached==f) { src_alpha = mAlphaSource; factor = mAlphaSource; factor.flags &= ~CORRUPTIBLE; // we already computed the blend factor before, nothing to do. if (mBlendFactorCached) return; // this is the first time, make sure to compute the blend // factor properly. mBlendFactorCached = f; break; } else { // we have a cached alpha blend factor, but we want another one, // this should really not happen because by construction, // we cannot have BOTH source and destination // blend factors use ALPHA *and* ONE_MINUS_ALPHA (because // the blending stage uses the f/(1-f) optimization // for completeness, we handle this case though. Since there // are only 2 choices, this meens we want "the other one" // (1-factor) factor = mAlphaSource; factor.flags &= ~CORRUPTIBLE; RSB(AL, 0, factor.reg, factor.reg, imm((1<<factor.s))); mBlendFactorCached = f; return; } } // fall-through... case GGL_ONE_MINUS_DST_COLOR: case GGL_DST_COLOR: case GGL_ONE_MINUS_SRC_COLOR: case GGL_SRC_COLOR: case GGL_ONE_MINUS_DST_ALPHA: case GGL_DST_ALPHA: case GGL_SRC_ALPHA_SATURATE: // help us find out what register we can use for the blend-factor // CORRUPTIBLE registers are chosen first, or a new one is allocated. if (fragment.flags & CORRUPTIBLE) { factor.setTo(fragment.reg, 32, CORRUPTIBLE); fragment.flags &= ~CORRUPTIBLE; } else if (fb.flags & CORRUPTIBLE) { factor.setTo(fb.reg, 32, CORRUPTIBLE); fb.flags &= ~CORRUPTIBLE; } else { factor.setTo(scratches.obtain(), 32, CORRUPTIBLE); } break; } // XXX: doesn't work if size==1 switch(f) { case GGL_ONE_MINUS_DST_COLOR: case GGL_DST_COLOR: factor.s = fb.s; ADD(AL, 0, factor.reg, fb.reg, reg_imm(fb.reg, LSR, fb.s-1)); break; case GGL_ONE_MINUS_SRC_COLOR: case GGL_SRC_COLOR: factor.s = fragment.s;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -