📄 suspension_sys_matlab.m
字号:
%% Analysis and simulation of Passive suspension system using MATLAB 7.5
%% (R2207b)using State Spce equations
Mse=90; % Mass of seat
Ms=250;% Mass of sprung
Mu=40;% Mass of Unsprung
bs=2000; %Damping ratio for sprung mass
bse=3000;%Damping ratio for seat mass
Kt=125000;%Stiffness of Unsprung mass
Ks=28000;%Stiffness of sprung mass
Kse=8000;%Stiffness of seat mass
Zr=0.2;% road disturbance
%% State Space Equation
%Coefficient A
A=[0,1,0,0,0,0;-Kse/Mse,-bse/Mse,Kse/Mse,bse/Mse,0,0;0,0,0,1,0,0;Kse/Ms,bse/Ms,-Kse/Ms-Ks/Ms,-bse/Ms-bs/Ms,Ks/Ms,bs/Ms;0,0,0,0,0,1;...
0,0,Ks/Mu,bs/Mu,-Ks/Mu-Kt/Mu,-bs/Mu];
%%Coeiffcient B
B=[0;0;0;0;0;Kt/Mu];
%C coefficient of displacement analysis
C1=[1,0,0,0,0,0];
C2=[0,0,1,0,0,0];
C3=[0,0,0,0,1,0];
%C coefficient for velocity analysis
v1=[0,1,0,0,0,0];
v2=[0,0,0,1,0,0];
v3=[0,0,0,0,0,1];
% coefficeint D
D=[0];
%% Vertical Displacement response of the suspension system
dse=ss(A,Zr*B,C1,D);%Seat output equation
ds=ss(A,Zr*B,C2,D);%sprung output equation
du=ss(A,Zr*B,C3,D);%Unsprung output equation
%% Vertical Velocity response of the suspension system
vse=ss(A,Zr*B,v1,D);
vs=ss(A,Zr*B,v2,D);
vu=ss(A,Zr*B,v3,D);
%% Velocity and displacement response of seat
step(dse,vse)
axis([0 10 -1 1.5])
legend('Displacement','velocity');
title('Velocity and displacement response of seat')
%% Velocity and displacement response of Spung Mass
figure;
step(ds,vs)
axis([0 10 -1 2])
legend('Displacement','velocity');
title('Velocity and displacement response of Spung Mass')
%% Velocity and displacement response of Unspung Mass
figure;
step(du,vu)
axis([0 1 -2 7])
legend('Displacement','velocity');
title('Velocity and displacement response of UnSpung Mass')
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -