⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 alg045.m

📁 matlab编程
💻 M
字号:
 % GAUSSIAN DOUBLE INTEGRAL ALGORITHM 4.5 
 %
 % To approximate I = double integral (( f(x, y) dy dx )) with limits
 % of integration from a to b for x and from c(x) to d(x) for y:
 %
 % INPUT:    endpoints a, b; positive integers m, n. (Assume that the
 %           roots r(i,j) and coefficients c(i,j) are available for 
 %           i equals m and n for 1<= j <= i.
 % 
 % OUTPUT:   approximation J to I. 
 syms('OK', 'A', 'B', 'M', 'N', 'r', 'co', 'H1', 'H2', 'AJ', 'I', 'X');
 syms('JX', 'C1', 'D1', 'K1', 'K2', 'J', 'Y', 'Q','x','s','y');
 TRUE = 1;
 FALSE = 0;
 fprintf(1,'This is Gaussian Quadrature for double integrals.\n');  
 fprintf(1,'Input the function F(x,y) in terms of x and y\n');
 fprintf(1,'For example: sqrt(x^2+y^2)\n');
 s = input(' ','s');
 F = inline(s,'x','y');
 fprintf(1,'Input the functions C(x), and D(x) in terms of x ');
 fprintf(1,'on separate lines\n');
 fprintf(1,'For example: cos(x) \n');
 fprintf(1,'             sin(x) \n');
 s = input(' ','s');
 C = inline(s,'x');
 s = input(' ','s');
 D = inline(s,'x');
 OK = FALSE;
 while OK == FALSE 
 fprintf(1,'Input lower limit of integration and upper limit of\n '); 
 fprintf(1,'integration on separate lines\n');
 A = input(' ');
 B = input(' ');
 if A > B 
 fprintf(1,'Lower limit must be less than upper limit\n');
 else
 OK = TRUE;
 end
 end 
 OK = FALSE;
 while OK == FALSE 
 fprintf(1,'Input two integers M > 1 and N > 1 on separate lines.\n');
 fprintf(1,'This implementation of Gaussian quadrature requires\n');
 fprintf(1,'both to be less than or equal to 5.\n');
 fprintf(1,'M is used for the outer integral and N for the inner\n');
 fprintf(1,'integral.\n');
 M = input(' ');
 N = input(' ');
 if M <= 1 | N <= 1  
 fprintf(1,'Integers must be greater than 1.\n');
 else
 if M > 5 | N > 5 
 fprintf(1,'Integers must be less than or equal to 5.\n');
 else
 OK = TRUE;
 end
 end
 end
 r = zeros(4,5);
 co = zeros(4,5);
 if OK == TRUE 
    r(1,1) = 0.5773502692;
    r(1,2) = -r(1,1);
    co(1,1) = 1.0;
    co(1,2) = 1.0;
    r(2,1) = 0.7745966692;
    r(2,2) = 0.0;
    r(2,3) = -r(2,1); 
    co(2,1) = 0.5555555556;
    co(2,2) = 0.8888888889;
    co(2,3) = co(2,1);
    r(3,1) = 0.8611363116;
    r(3,2) = 0.3399810436;
    r(3,3) = -r(3,2);
    r(3,4) = -r(3,1);
    co(3,1) = 0.3478548451;
    co(3,2) = 0.6521451549;
    co(3,3) = co(3,2);
    co(3,4) = co(3,1);
    r(4,1) = 0.9061798459;
    r(4,2) = 0.5384693101;
    r(4,3) = 0.0;
    r(4,4) = -r(4,2);
    r(4,5) = -r(4,1);
    co(4,1) = 0.2369268850;
    co(4,2) = 0.4786286705;
    co(4,3) = 0.5688888889;
    co(4,4) = co(4,2);
    co(4,5) = co(4,1);
% STEP 1 
 H1 = (B-A)/2;
 H2 = (B+A)/2;
% use AJ in place of J 
 AJ = 0;
% STEP 2 
 for I = 1:M
% STEP 3 
X = H1*r(M-1,I)+H2;
 JX = 0;
 C1 = C(X);
 D1 = D(X);
 K1 = (D1-C1)/2;
 K2 = (D1+C1)/2;
% STEP 4 
 for J = 1:N
 Y = K1 * r(N-1,J)+K2;
 Q = F(X, Y);
 JX = JX + co(N-1,J)*Q;
 end
 % STEP 5 
 AJ = AJ+co(M-1,I)*K1*JX;
 end
 % STEP 6 
 AJ = AJ*H1;
 % STEP 7 
 fprintf(1,'\nThe double integral of F from %12.8f to %12.8f is\n', A, B);
 fprintf(1,'  %.10e', AJ);
 fprintf(1,' obtained with M = %3d and N = %3d\n', M, N);
 end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -