📄 alg113.m
字号:
% LINEAR FINITE-DIFFERENCE ALGORITHM 11.3
%
% To approximate the solution of the boundary-value problem
%
% Y'' = P(X)Y' + Q(X)Y + R(X), A<=X<=B, Y(A) = ALPHA, Y(B) = BETA:
%
% INPUT: Endpoints A, B; boundary conditions ALPHA, BETA;
% integer N.
%
% OUTPUT: Approximations W(I) to Y(X(I)) for each I=0,1,...,N+1.
syms('OK', 'AA', 'BB', 'ALPHA', 'BETA', 'N', 'FLAG', 'NAME');
syms('OUP', 'H', 'X', 'A', 'B', 'D', 'M', 'I', 'C', 'L', 'U');
syms('Z', 'W', 'J', 's', 'x');
TRUE = 1;
FALSE = 0;
fprintf(1,'This is the Linear Finite-Difference Method.\n');
fprintf(1,'Input the functions P(X), Q(X) and R(X) in terms of x, \n');
fprintf(1,'on separate lines.\n');
fprintf(1,'For example: -2/x \n');
fprintf(1,' 2/(x^2) \n');
fprintf(1,' sin(log(x))/(x^2)\n');
s = input(' ','s');
P = inline(s,'x');
s = input(' ','s');
Q = inline(s,'x');
s = input(' ','s');
R = inline(s,'x');
OK = FALSE;
while OK == FALSE
fprintf(1,'Input left and right endpoints on separate lines.\n');
AA = input(' ');
BB = input(' ');
if AA >= BB
fprintf(1,'Left endpoint must be less than right endpoint.\n');
else
OK = TRUE;
end;
end;
fprintf(1,'Input Y( %.10e).\n', AA);
ALPHA = input(' ');
fprintf(1,'Input Y( %.10e).\n', BB);
BETA = input(' ');
OK = FALSE;
while OK == FALSE
fprintf(1,'Input an integer > 1 for the number of\n');
fprintf(1,'subintervals. Note that h = (b-a)/(n+1)\n');
N = input(' ');
if N <= 1
fprintf(1,'Number must exceed 1.\n');
else
OK = TRUE;
end;
end;
if OK == TRUE
fprintf(1,'Choice of output method:\n');
fprintf(1,'1. Output to screen\n');
fprintf(1,'2. Output to text File\n');
fprintf(1,'Please enter 1 or 2.\n');
FLAG = input(' ');
if FLAG == 2
fprintf(1,'Input the file name in the form - drive:\\name.ext\n');
fprintf(1,'for example A:\\OUTPUT.DTA\n');
NAME = input(' ','s');
OUP = fopen(NAME,'wt');
else
OUP = 1;
end;
fprintf(OUP, 'LINEAR FINITE DIFFERENCE METHOD\n\n');
fprintf(OUP, ' I X(I) W(I)\n');
% STEP 1 */
H = (BB-AA)/(N+1);
A = zeros(1,N+1);
B = zeros(1,N+1);
C = zeros(1,N+1);
D = zeros(1,N+1);
L = zeros(1,N+1);
U = zeros(1,N+1);
Z = zeros(1,N+1);
W = zeros(1,N+1);
X = AA+H;
A(1) = 2+H^2*Q(X);
B(1) = -1+0.5*H*P(X);
D(1) = -H^2*R(X)+(1+0.5*H*P(X))*ALPHA;
M = N-1;
% STEP 2 */
for I = 2 : M
X = AA+I*H;
A(I) = 2+H^2*Q(X);
B(I) = -1+0.5*H*P(X);
C(I) = -1-0.5*H*P(X);
D(I) = -H^2*R(X);
end;
% STEP 3 */
X = BB-H;
A(N) = 2+H^2*Q(X);
C(N) = -1-0.5*H*P(X);
D(N) = -H^2*R(X)+(1-0.5*H*P(X))*BETA;
% STEP 4 */
% STEPS 4 through 8 solve a tridiagonal linear system using
% Crout factorization */
L(1) = A(1);
U(1) = B(1)/A(1);
Z(1) = D(1)/L(1);
% STEP 5 */
for I = 2 : M
L(I) = A(I)-C(I)*U(I-1);
U(I) = B(I)/L(I);
Z(I) = (D(I)-C(I)*Z(I-1))/L(I);
end;
% STEP 6 */
L(N) = A(N)-C(N)*U(N-1);
Z(N) = (D(N)-C(N)*Z(N-1))/L(N);
% STEP 7 */
W(N) = Z(N);
% STEP 8 */
for J = 1 : M
I = N-J;
W(I) = Z(I)-U(I)*W(I+1);
end;
I = 0;
% STEP 9 */
fprintf(OUP, '%3d %13.8f %13.8f\n', I, AA, ALPHA);
for I = 1 : N
X = AA+I*H;
fprintf(OUP, '%3d %13.8f %13.8f\n', I, X, W(I));
end;
I = N+1;
fprintf(OUP, '%3d %13.8f %13.8f\n', I, BB, BETA);
% STEP 12 */
if OUP ~= 1
fclose(OUP);
fprintf(1,'Output file %s created successfully \n',NAME);
end;
end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -