📄 alg025.m
字号:
% METHOD OF FALSE POSITION ALGORITHM 2.5
%
% To find a solution to f(x) = 0 given the continuous function
% f on the interval [p0,p1], where f(p0) and f(p1) have
% opposite signs:
%
% INPUT: endpoints p0, p1; tolerance TOL;
% maximum number of iterations N0.
%
% OUTPUT: approximate solution p or
% a message that the algorithm fails.
syms('OK', 'P0', 'P1', 'X', 'Q0', 'Q1', 'TOL', 'NO', 'FLAG');
syms('NAME', 'OUP', 'I', 'P', 'Q','x','s');
TRUE = 1;
FALSE = 0;
fprintf(1,'This is the Method of False Position\n');
fprintf(1,'Input the function F(x) in terms of x\n');
fprintf(1,'For example: cos(x)\n');
s = input(' ','s');
F = inline(s,'x');
OK = FALSE;
while OK == FALSE
fprintf(1,'Input endpoints P0 < P1 on separate lines.\n');
P0 = input(' ');
P1 = input(' ');
if P0 > P1
X = P0;
P0 = P1;
P1 = X;
end
if P0 == P1
fprintf(1,'P0 cannot equal P1\n');
else
Q0 = F(P0);
Q1 = F(P1);
if Q0*Q1 > 0
fprintf(1,'F(P0) and F(P1) have the same sign.\n');
else
OK = TRUE;
end
end
end
OK = FALSE;
while OK == FALSE
fprintf(1,'Input tolerance\n');
TOL = input(' ');
if TOL <= 0
fprintf(1,'Tolerance must be positive\n');
else
OK = TRUE;
end
end
OK = FALSE;
while OK == FALSE
fprintf(1,'Input maximum number of iterations - no decimal point\n');
NO = input(' ');
if NO <= 0
fprintf(1,'Must be positive integer\n');
else
OK = TRUE;
end
end
if OK == TRUE
fprintf(1,'Select output destination\n');
fprintf(1,'1. Screen\n');
fprintf(1,'2. Text file\n');
fprintf(1,'Enter 1 or 2\n');
FLAG = input(' ');
if FLAG == 2
fprintf(1,'Input the file name in the form - drive:\\name.ext\n');
fprintf(1,'For example: A:\\OUTPUT.DTA\n');
NAME = input(' ','s');
OUP = fopen(NAME,'wt');
else
OUP = 1;
end
fprintf(1,'Select amount of output\n');
fprintf(1,'1. Answer only\n');
fprintf(1,'2. All intermediate approximations\n');
fprintf(1,'Enter 1 or 2\n');
FLAG = input(' ');
fprintf(OUP, 'METHOD OF FALSE POSITION OR REGULA FALSII\n\n');
if FLAG == 2
fprintf(OUP, ' I P F(P)\n');
end
% STEP 1
I = 2;
OK = TRUE;
Q0 = F(P0);
Q1 = F(P1);
% STEP 2
while I <= NO & OK == TRUE
% STEP 3
% compute P(I)
P = P1-Q1*(P1-P0)/(Q1-Q0);
Q = F(P);
if FLAG == 2
fprintf(OUP,'%3d %15.8e %15.8e\n',I,P,Q);
end
% STEP 4
if abs(P-P1) < TOL
% procedure completed successfully
fprintf(OUP,'\nApproximate solution P = %12.8f\n',P);
fprintf(OUP,'with F(P) = %12.8f\n',Q);
fprintf(OUP,'Number of iterations = %3d',I);
fprintf(OUP,' Tolerance = %15.8e\n',TOL);
OK = FALSE;
else
% STEP 5
I = I+1;
% STEP 6
% compute P0(I) and P1(I)
if Q*Q1 < 0
P0 = P1;
Q0 = Q1;
end
% STEP 7
P1 = P;
Q1 = Q;
end
end
if OK == TRUE
% procedure completed unsuccessfully
fprintf(OUP,'\nIteration number %3d',NO);
fprintf(OUP,' gave approximation %12.8f\n',P);
fprintf(OUP,'F(P) = %12.8f not within tolerance: %15.8e\n',Q,TOL);
end
if OUP ~= 1
fclose(OUP);
fprintf(1,'Output file %s created successfully\n',NAME);
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -