📄 alg058.m
字号:
% TRAPEZOIDAL WITH NEWTON ITERATION ALGORITHM 5.8
%
% TO APPROXIMATE THE SOLUTION OF THE INITIAL VALUE PROBLEM:
% Y' = F(T,Y), A <= T <= B, Y(A) = ALPHA,
% AT (N+1) EQUALLY SPACED NUMBERS IN THE INTERVAL [A,B].
%
% INPUT: ENDPOINTS A,B; INITIAL CONDITION ALPHA; INTEGER N;
% TOLERANCE TOL; MAXIMUM NUMBER OF ITERATIONS M AT ANY ONE STEP.
%
% OUTPUT: APPROXIMATION W TO Y AT THE (N+1) VALUES OF T
% OR A MESSAGE OF FAILURE.
syms('F', 'FYP', 'OK', 'A', 'B', 'ALPHA', 'N', 'TOL', 'M');
syms('FLAG', 'NAME', 'OUP', 'W', 'T', 'H', 'I', 'XK1', 'W0');
syms('J', 'IFLAG','y','t');
TRUE = 1;
FALSE = 0;
fprintf(1,'This is the Implicit Trapezoidal Method.\n');
fprintf(1,'Input the function F(t,y) in terms of t and y\n');
fprintf(1,'For example: y^2-y*t^2+1 \n');
s = input(' ','s');
F = inline(s,'t','y');
fprintf(1,'Input the partial derivative of F(t,y) with respect to y \n');
fprintf(1,'in terms of t and y.\n');
fprintf(1,'for example: 2*y-t^2 \n');
s = input(' ','s');
FYP = inline(s,'t','y');
OK = FALSE;
while OK == FALSE
fprintf(1,'Input left and right endpoints on separate lines.\n');
A = input(' ');
B = input(' ');
if A >= B
fprintf(1,'Left endpoint must be less than right endpoint.\n');
else
OK = TRUE;
end;
end;
fprintf(1,'Input the initial condition.\n');
ALPHA = input(' ');
OK = FALSE;
while OK == FALSE
fprintf(1,'Input a positive integer for the number of subintervals.\n');
N = input(' ');
if N <= 0
fprintf(1,'Number must be a postiive integer.\n');
else
OK = TRUE;
end;
end;
OK = FALSE;
while OK == FALSE
fprintf(1,'Input tolerance.\n');
TOL = input(' ');
if TOL <= 0
fprintf(1,'Tolerance must be positive.\n');
else
OK = TRUE;
end;
end;
OK = FALSE;
while OK == FALSE
fprintf(1,'Input maximum number of iterations.\n');
M = input(' ');
if M > 0
OK = TRUE;
else
fprintf(1,'Number of iterations must be positive.\n');
end;
end;
if OK == TRUE
fprintf(1,'Choice of output method:\n');
fprintf(1,'1. Output to screen\n');
fprintf(1,'2. Output to text file\n');
fprintf(1,'Please enter 1 or 2\n');
FLAG = input(' ');
if FLAG == 2
fprintf(1,'Input the file name in the form - drive:\\name.ext\n');
fprintf(1,'For example A:\\OUTPUT.DTA\n');
NAME = input(' ','s');
OUP = fopen(NAME,'wt');
else
OUP = 1;
end;
fprintf(OUP, 'IMPLICIT TRAPEZOIDAL METHOD USING NEWTONS METHOD\n\n');
fprintf(OUP, ' t w #iter\n');
% STEP 1
W = ALPHA;
T = A;
H = (B-A)/N;
fprintf(OUP, '%5.3f %11.8f 0\n', T, W);
I = 1;
OK = TRUE;
% STEP 2
while I <= N & OK == TRUE
% STEP 3
XK1 = W+0.5*H*F(T, W);
W0 = XK1;
J = 1;
IFLAG = 0;
% STEP 4
while IFLAG == 0 & OK == TRUE
% STEP 5
W = W0-(W0-XK1-0.5*H*F(T+H, W0))/(1-0.5*H*FYP(T+H, W0));
% STEP 6
if abs(W-W0) < TOL
IFLAG = 1;
% STEP 7
T = A+I*H;
fprintf(OUP,'%5.3f %11.8f %3d\n', T, W, J);
I = I+1;
else
J = J+1;
W0 = W;
if J > M
OK = FALSE;
end;
end;
end;
end;
if OK == FALSE
fprintf(OUP, 'Maximum Number of Iterations Exceeded\n');
end;
% STEP 8
if OUP ~= 1
fclose(OUP);
fprintf(1,'Output file %s created successfully \n',NAME);
end;
end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -