📄 find_good_sample.m
字号:
function positiveSample = find_good_sample(X, normals)% Basic criteria for picking a good representive sample:% 1. X coordinates far away from the origin% 2. Its normal vector must not be short, which will be influenced more by% the noiseX_PERSERVATION_RATIO = 0.5;NORMAL_PERSERVATION_RATIO = 0.5;[ambientDimension sampleNumber]= size(X);for sampleIndex=1:sampleNumber xNorm(sampleIndex)=norm(X(:,sampleIndex));end[ignored, index] = sort(xNorm,'descend');preserveIndex = ceil(sampleNumber*X_PERSERVATION_RATIO);normalNorm=zeros(1, preserveIndex);for sampleIndex = 1: preserveIndex normalNorm(sampleIndex)=norm(normals(:,index(sampleIndex)));end[ignored,normalIndex] = sort(normalNorm,'descend');% Randomly pick one sample in 1/4 longest normal vector set.positiveSample = index(normalIndex(ceil(preserveIndex*rand()*NORMAL_PERSERVATION_RATIO)));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -