⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 viterbi39_av.c

📁 FEC Optimized viterbi code
💻 C
字号:
/* K=9 r=1/3 Viterbi decoder for PowerPC G4/G5 Altivec vector instructions * 8-bit offset-binary soft decision samples * Copyright Aug 2006, Phil Karn, KA9Q * May be used under the terms of the GNU Lesser General Public License (LGPL) */#include <stdio.h>#include <stdlib.h>#include <memory.h>#include <limits.h>#include "fec.h"typedef union { unsigned char c[2][16]; vector unsigned char v[2]; } decision_t;typedef union { unsigned short s[256]; vector unsigned short v[32]; } metric_t;static union branchtab39 { unsigned short s[128]; vector unsigned short v[16];} Branchtab39[3];static int Init = 0;/* State info for instance of Viterbi decoder */struct v39 {  metric_t metrics1; /* path metric buffer 1 */  metric_t metrics2; /* path metric buffer 2 */  void *dp;          /* Pointer to current decision */  metric_t *old_metrics,*new_metrics; /* Pointers to path metrics, swapped on every bit */  void *decisions;   /* Beginning of decisions for block */};/* Initialize Viterbi decoder for start of new frame */int init_viterbi39_av(void *p,int starting_state){  struct v39 *vp = p;  int i;  for(i=0;i<32;i++)    vp->metrics1.v[i] = (vector unsigned short)(1000);  vp->old_metrics = &vp->metrics1;  vp->new_metrics = &vp->metrics2;  vp->dp = vp->decisions;  vp->old_metrics->s[starting_state & 255] = 0; /* Bias known start state */  return 0;}void set_viterbi39_polynomial_av(int polys[3]){  int state;  for(state=0;state < 128;state++){    Branchtab39[0].s[state] = (polys[0] < 0) ^ parity((2*state) & abs(polys[0])) ? 255 : 0;    Branchtab39[1].s[state] = (polys[1] < 0) ^ parity((2*state) & abs(polys[1])) ? 255 : 0;    Branchtab39[2].s[state] = (polys[2] < 0) ^ parity((2*state) & abs(polys[2])) ? 255 : 0;  }  Init++;}/* Create a new instance of a Viterbi decoder */void *create_viterbi39_av(int len){  struct v39 *vp;  if(!Init){    int polys[3] = { V39POLYA, V39POLYB, V39POLYC };    set_viterbi39_polynomial_av(polys);  }  vp = (struct v39 *)malloc(sizeof(struct v39));  vp->decisions = malloc(sizeof(decision_t)*(len+8));  init_viterbi39_av(vp,0);  return vp;}/* Viterbi chainback */int chainback_viterbi39_av(      void *p,      unsigned char *data, /* Decoded output data */      unsigned int nbits, /* Number of data bits */      unsigned int endstate){ /* Terminal encoder state */  struct v39 *vp = p;  decision_t *d = (decision_t *)vp->decisions;  int path_metric;  /* Make room beyond the end of the encoder register so we can   * accumulate a full byte of decoded data   */  endstate %= 256;  path_metric = vp->old_metrics->s[endstate];  /* The store into data[] only needs to be done every 8 bits.   * But this avoids a conditional branch, and the writes will   * combine in the cache anyway   */  d += 8; /* Look past tail */  while(nbits-- != 0){    int k;        k = (d[nbits].c[endstate >> 7][endstate & 15] & (0x80 >> ((endstate>>4)&7)) ) ? 1 : 0;    endstate = (k << 7) | (endstate >> 1);    data[nbits>>3] = endstate;  }  return path_metric;}/* Delete instance of a Viterbi decoder */void delete_viterbi39_av(void *p){  struct v39 *vp = p;  if(vp != NULL){    free(vp->decisions);    free(vp);  }}int update_viterbi39_blk_av(void *p,unsigned char *syms,int nbits){  struct v39 *vp = p;  decision_t *d = (decision_t *)vp->dp;  int path_metric = 0;  vector unsigned char decisions = (vector unsigned char)(0);  while(nbits--){    vector unsigned short symv,sym0v,sym1v,sym2v;    vector unsigned char s;    void *tmp;    int i;        /* Splat the 0th symbol across sym0v, the 1st symbol across sym1v, etc */    s = (vector unsigned char)vec_perm(vec_ld(0,syms),vec_ld(5,syms),vec_lvsl(0,syms));    symv = (vector unsigned short)vec_mergeh((vector unsigned char)(0),s);    /* Unsigned byte->word unpack */     sym0v = vec_splat(symv,0);    sym1v = vec_splat(symv,1);    sym2v = vec_splat(symv,2);    syms += 3;        for(i=0;i<16;i++){      vector bool short decision0,decision1;      vector unsigned short metric,m_metric,m0,m1,m2,m3,survivor0,survivor1;      /* Form branch metrics       * Because Branchtab takes on values 0 and 255, and the values of sym?v are offset binary in the range 0-255,       * the XOR operations constitute conditional negation.       * the metrics are in the range 0-765       */      m0 = vec_add(vec_xor(Branchtab39[0].v[i],sym0v),vec_xor(Branchtab39[1].v[i],sym1v));      m1 = vec_xor(Branchtab39[2].v[i],sym2v);      metric = vec_add(m0,m1);      m_metric = vec_sub((vector unsigned short)(765),metric);          /* Add branch metrics to path metrics */      m0 = vec_adds(vp->old_metrics->v[i],metric);      m3 = vec_adds(vp->old_metrics->v[16+i],metric);      m1 = vec_adds(vp->old_metrics->v[16+i],m_metric);      m2 = vec_adds(vp->old_metrics->v[i],m_metric);          /* Compare and select */      decision0 = vec_cmpgt(m0,m1);      decision1 = vec_cmpgt(m2,m3);      survivor0 = vec_min(m0,m1);      survivor1 = vec_min(m2,m3);          /* Store decisions and survivors.       * To save space without SSE2's handy PMOVMSKB instruction, we pack and store them in       * a funny interleaved fashion that we undo in the chainback function.       */      decisions = vec_add(decisions,decisions); /* Shift each byte 1 bit to the left */      /* Booleans are either 0xff or 0x00. Subtracting 0x00 leaves the lsb zero; subtracting       * 0xff is equivalent to adding 1, which sets the lsb.       */      decisions = vec_sub(decisions,(vector unsigned char)vec_pack(vec_mergeh(decision0,decision1),vec_mergel(decision0,decision1)));      vp->new_metrics->v[2*i] = vec_mergeh(survivor0,survivor1);      vp->new_metrics->v[2*i+1] = vec_mergel(survivor0,survivor1);      if((i % 8) == 7){	/* We've accumulated a total of 128 decisions, stash and start again */	d->v[i>>3] = decisions; /* No need to clear, the new bits will replace the old */      }    }#if 0    /* Experimentally determine metric spread     * The results are fixed for a given code and input symbol size     */    {      int i;      vector unsigned short min_metric;      vector unsigned short max_metric;      union { vector unsigned short v; unsigned short s[8];} t;      int minimum,maximum;      static int max_spread = 0;      min_metric = max_metric = vp->new_metrics->v[0];      for(i=1;i<32;i++){	min_metric = vec_min(min_metric,vp->new_metrics->v[i]);	max_metric = vec_max(max_metric,vp->new_metrics->v[i]);      }      min_metric = vec_min(min_metric,vec_sld(min_metric,min_metric,8));      max_metric = vec_max(max_metric,vec_sld(max_metric,max_metric,8));      min_metric = vec_min(min_metric,vec_sld(min_metric,min_metric,4));      max_metric = vec_max(max_metric,vec_sld(max_metric,max_metric,4));      min_metric = vec_min(min_metric,vec_sld(min_metric,min_metric,2));      max_metric = vec_max(max_metric,vec_sld(max_metric,max_metric,2));      t.v = min_metric;      minimum = t.s[0];      t.v = max_metric;      maximum = t.s[0];      if(maximum-minimum > max_spread){	max_spread = maximum-minimum;	printf("metric spread = %d\n",max_spread);      }    }#endif    /* Renormalize if necessary. This deserves some explanation.     * The maximum possible spread, found by experiment, for 8 bit symbols is about 3825     * So by looking at one arbitrary metric we can tell if any of them have possibly saturated.     * However, this is very conservative. Large spreads occur only at very high Eb/No, where     * saturating a bad path metric doesn't do much to increase its chances of being erroneously chosen as a survivor.     * At more interesting (low) Eb/No ratios, the spreads are much smaller so our chances of saturating a metric     * by not not normalizing when we should are extremely low. So either way, the risk to performance is small.     * All this is borne out by experiment.     */    if(vp->new_metrics->s[0] >= USHRT_MAX-5000){      vector unsigned short scale;      union { vector unsigned short v; unsigned short s[8];} t;            /* Find smallest metric and splat */      scale = vp->new_metrics->v[0];      for(i=1;i<32;i++)	scale = vec_min(scale,vp->new_metrics->v[i]);      scale = vec_min(scale,vec_sld(scale,scale,8));      scale = vec_min(scale,vec_sld(scale,scale,4));      scale = vec_min(scale,vec_sld(scale,scale,2));      /* Subtract it from all metrics       * Work backwards to try to improve the cache hit ratio, assuming LRU       */      for(i=31;i>=0;i--)	vp->new_metrics->v[i] = vec_subs(vp->new_metrics->v[i],scale);      t.v = scale;      path_metric += t.s[0];    }    d++;    /* Swap pointers to old and new metrics */    tmp = vp->old_metrics;    vp->old_metrics = vp->new_metrics;    vp->new_metrics = tmp;  }  vp->dp = d;  return path_metric;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -