⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sse2bfly27.s

📁 FEC Optimized viterbi code
💻 S
字号:
/* Intel SIMD (SSE2) implementations of Viterbi ACS butterflies   for 64-state (k=7) convolutional code   Copyright 2003 Phil Karn, KA9Q   This code may be used under the terms of the GNU Lesser General Public License (LGPL)   void update_viterbi27_blk_sse2(struct v27 *vp,unsigned char syms[],int nbits) ; */	# SSE2 (128-bit integer SIMD) version	# Requires Pentium 4 or better	# These are offsets into struct v27, defined in viterbi27.h	.set DP,128	.set OLDMETRICS,132	.set NEWMETRICS,136	.text		.global update_viterbi27_blk_sse2,Branchtab27_sse2	.type update_viterbi27_blk_sse2,@function	.align 16	update_viterbi27_blk_sse2:	pushl %ebp	movl %esp,%ebp	pushl %esi	pushl %edi	pushl %edx	pushl %ebx		movl 8(%ebp),%edx	# edx = vp	testl %edx,%edx	jnz  0f	movl -1,%eax	jmp  err		0:	movl OLDMETRICS(%edx),%esi	# esi -> old metrics	movl NEWMETRICS(%edx),%edi	# edi -> new metrics	movl DP(%edx),%edx	# edx -> decisions1:	movl 16(%ebp),%eax	# eax = nbits	decl %eax	jl   2f			# passed zero, we're done	movl %eax,16(%ebp)	xorl %eax,%eax	movl 12(%ebp),%ebx	# ebx = syms	movb (%ebx),%al	movd %eax,%xmm6		# xmm6[0] = first symbol	movb 1(%ebx),%al	movd %eax,%xmm5		# xmm5[0] = second symbol	addl $2,%ebx	movl %ebx,12(%ebp)	punpcklbw %xmm6,%xmm6	# xmm6[1] = xmm6[0]	punpcklbw %xmm5,%xmm5	pshuflw $0,%xmm6,%xmm6	# copy low word to low 3	pshuflw $0,%xmm5,%xmm5	punpcklqdq %xmm6,%xmm6  # propagate to all 16	punpcklqdq %xmm5,%xmm5	# xmm6 now contains first symbol in each byte, xmm5 the second	movdqa thirtyones,%xmm7		# each invocation of this macro does 16 butterflies in parallel	.MACRO butterfly GROUP	# compute branch metrics	movdqa Branchtab27_sse2+(16*\GROUP),%xmm4	movdqa Branchtab27_sse2+32+(16*\GROUP),%xmm3	pxor %xmm6,%xmm4	pxor %xmm5,%xmm3		# compute 5-bit branch metric in xmm4 by adding the individual symbol metrics	# This is okay for this	# code because the worst-case metric spread (at high Eb/No) is only 120,	# well within the range of our unsigned 8-bit path metrics, and even within	# the range of signed 8-bit path metrics	pavgb %xmm3,%xmm4	psrlw $3,%xmm4	pand %xmm7,%xmm4	movdqa (16*\GROUP)(%esi),%xmm0	# Incoming path metric, high bit = 0	movdqa ((16*\GROUP)+32)(%esi),%xmm3	# Incoming path metric, high bit = 1	movdqa %xmm0,%xmm2	movdqa %xmm3,%xmm1	paddusb %xmm4,%xmm0	# note use of saturating arithmetic	paddusb %xmm4,%xmm3	# this shouldn't be necessary, but why not?		# negate branch metrics	pxor %xmm7,%xmm4	paddusb %xmm4,%xmm1	paddusb %xmm4,%xmm2			# Find survivors, leave in mm0,2	pminub %xmm1,%xmm0	pminub %xmm3,%xmm2	# get decisions, leave in mm1,3	pcmpeqb %xmm0,%xmm1	pcmpeqb %xmm2,%xmm3		# interleave and store new branch metrics in mm0,2	movdqa %xmm0,%xmm4	punpckhbw %xmm2,%xmm0	# interleave second 16 new metrics	punpcklbw %xmm2,%xmm4	# interleave first 16 new metrics	movdqa %xmm0,(32*\GROUP+16)(%edi)	movdqa %xmm4,(32*\GROUP)(%edi)	# interleave decisions & store	movdqa %xmm1,%xmm4	punpckhbw %xmm3,%xmm1	punpcklbw %xmm3,%xmm4	# work around bug in gas due to Intel doc error	.byte 0x66,0x0f,0xd7,0xd9	# pmovmskb %xmm1,%ebx	shll $16,%ebx	.byte 0x66,0x0f,0xd7,0xc4	# pmovmskb %xmm4,%eax	orl %eax,%ebx	movl %ebx,(4*\GROUP)(%edx)	.endm	# invoke macro 2 times for a total of 32 butterflies	butterfly GROUP=0	butterfly GROUP=1	addl $8,%edx		# bump decision pointer			# See if we have to normalize. This requires an explanation. We don't want	# our path metrics to exceed 255 on the *next* iteration. Since the	# largest branch metric is 30, that means we don't want any to exceed 225	# on *this* iteration. Rather than look them all, we just pick an arbitrary one	# (the first) and see if it exceeds 225-120=105, where 120 is the experimentally-	# determined worst-case metric spread for this code and branch metrics in the range 0-30.		# This is extremely conservative, and empirical testing at a variety of Eb/Nos might	# show that a higher threshold could be used without affecting BER performance	movl (%edi),%eax	# extract first output metric	andl $255,%eax	cmp $105,%eax	jle done		# No, no need to normalize	# Normalize by finding smallest metric and subtracting it	# from all metrics. We can't just pick an arbitrary small constant because	# the minimum metric might be zero!	movdqa (%edi),%xmm0	movdqa %xmm0,%xmm4		movdqa 16(%edi),%xmm1	pminub %xmm1,%xmm4	movdqa 32(%edi),%xmm2	pminub %xmm2,%xmm4		movdqa 48(%edi),%xmm3		pminub %xmm3,%xmm4	# crunch down to single lowest metric	movdqa %xmm4,%xmm5	psrldq $8,%xmm5     # the count to psrldq is bytes, not bits!	pminub %xmm5,%xmm4	movdqa %xmm4,%xmm5	psrlq $32,%xmm5	pminub %xmm5,%xmm4	movdqa %xmm4,%xmm5	psrlq $16,%xmm5	pminub %xmm5,%xmm4	movdqa %xmm4,%xmm5	psrlq $8,%xmm5	pminub %xmm5,%xmm4	# now in lowest byte of %xmm4	punpcklbw %xmm4,%xmm4	# lowest 2 bytes	pshuflw $0,%xmm4,%xmm4  # lowest 8 bytes	punpcklqdq %xmm4,%xmm4	# all 16 bytes		# xmm4 now contains lowest metric in all 16 bytes	# subtract it from every output metric	psubusb %xmm4,%xmm0	psubusb %xmm4,%xmm1	psubusb %xmm4,%xmm2	psubusb %xmm4,%xmm3		movdqa %xmm0,(%edi)	movdqa %xmm1,16(%edi)		movdqa %xmm2,32(%edi)		movdqa %xmm3,48(%edi)		done:			# swap metrics	movl %esi,%eax	movl %edi,%esi	movl %eax,%edi	jmp 1b	2:	movl 8(%ebp),%ebx	# ebx = vp	# stash metric pointers	movl %esi,OLDMETRICS(%ebx)	movl %edi,NEWMETRICS(%ebx)	movl %edx,DP(%ebx)	# stash incremented value of vp->dp	xorl %eax,%eaxerr:	popl %ebx	popl %edx	popl %edi	popl %esi	popl %ebp	ret	.data	.align 16thirtyones:	.byte 31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -