⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 op-4.h

📁 上传linux-jx2410的源代码
💻 H
字号:
/* * BK Id: SCCS/s.op-4.h 1.5 05/17/01 18:14:23 cort *//* * Basic four-word fraction declaration and manipulation. * * When adding quadword support for 32 bit machines, we need * to be a little careful as double multiply uses some of these * macros: (in op-2.h) * _FP_MUL_MEAT_2_wide() uses _FP_FRAC_DECL_4, _FP_FRAC_WORD_4, * _FP_FRAC_ADD_4, _FP_FRAC_SRS_4 * _FP_MUL_MEAT_2_gmp() uses _FP_FRAC_SRS_4 (and should use * _FP_FRAC_DECL_4: it appears to be broken and is not used  * anywhere anyway. ) * * I've now fixed all the macros that were here from the sparc64 code. * [*none* of the shift macros were correct!] -- PMM 02/1998 *  * The only quadword stuff that remains to be coded is:  * 1) the conversion to/from ints, which requires  * that we check (in op-common.h) that the following do the right thing * for quadwords: _FP_TO_INT(Q,4,r,X,rsz,rsg), _FP_FROM_INT(Q,4,X,r,rs,rt) * 2) multiply, divide and sqrt, which require: * _FP_MUL_MEAT_4_*(R,X,Y), _FP_DIV_MEAT_4_*(R,X,Y), _FP_SQRT_MEAT_4(R,S,T,X,q), * This also needs _FP_MUL_MEAT_Q and _FP_DIV_MEAT_Q to be defined to * some suitable _FP_MUL_MEAT_4_* macros in sfp-machine.h. * [we're free to choose whatever FP_MUL_MEAT_4_* macros we need for * these; they are used nowhere else. ] */#define _FP_FRAC_DECL_4(X)	_FP_W_TYPE X##_f[4]#define _FP_FRAC_COPY_4(D,S)			\  (D##_f[0] = S##_f[0], D##_f[1] = S##_f[1],	\   D##_f[2] = S##_f[2], D##_f[3] = S##_f[3])/* The _FP_FRAC_SET_n(X,I) macro is intended for use with another * macro such as _FP_ZEROFRAC_n which returns n comma separated values. * The result is that we get an expansion of __FP_FRAC_SET_n(X,I0,I1,I2,I3) * which just assigns the In values to the array X##_f[].  * This is why the number of parameters doesn't appear to match * at first glance...      -- PMM  */#define _FP_FRAC_SET_4(X,I)	__FP_FRAC_SET_4(X, I)#define _FP_FRAC_HIGH_4(X)	(X##_f[3])#define _FP_FRAC_LOW_4(X)	(X##_f[0])#define _FP_FRAC_WORD_4(X,w)	(X##_f[w])#define _FP_FRAC_SLL_4(X,N)						\  do {									\    _FP_I_TYPE _up, _down, _skip, _i;					\    _skip = (N) / _FP_W_TYPE_SIZE;					\    _up = (N) % _FP_W_TYPE_SIZE;					\    _down = _FP_W_TYPE_SIZE - _up;					\    for (_i = 3; _i > _skip; --_i)					\      X##_f[_i] = X##_f[_i-_skip] << _up | X##_f[_i-_skip-1] >> _down;	\/* bugfixed: was X##_f[_i] <<= _up;  -- PMM 02/1998 */                  \    X##_f[_i] = X##_f[0] << _up; 	                                \    for (--_i; _i >= 0; --_i)						\      X##_f[_i] = 0;							\  } while (0)/* This one was broken too */#define _FP_FRAC_SRL_4(X,N)						\  do {									\    _FP_I_TYPE _up, _down, _skip, _i;					\    _skip = (N) / _FP_W_TYPE_SIZE;					\    _down = (N) % _FP_W_TYPE_SIZE;					\    _up = _FP_W_TYPE_SIZE - _down;					\    for (_i = 0; _i < 3-_skip; ++_i)					\      X##_f[_i] = X##_f[_i+_skip] >> _down | X##_f[_i+_skip+1] << _up;	\    X##_f[_i] = X##_f[3] >> _down;			         	\    for (++_i; _i < 4; ++_i)						\      X##_f[_i] = 0;							\  } while (0)/* Right shift with sticky-lsb.  * What this actually means is that we do a standard right-shift, * but that if any of the bits that fall off the right hand side * were one then we always set the LSbit. */#define _FP_FRAC_SRS_4(X,N,size)					\  do {									\    _FP_I_TYPE _up, _down, _skip, _i;					\    _FP_W_TYPE _s;							\    _skip = (N) / _FP_W_TYPE_SIZE;					\    _down = (N) % _FP_W_TYPE_SIZE;					\    _up = _FP_W_TYPE_SIZE - _down;					\    for (_s = _i = 0; _i < _skip; ++_i)					\      _s |= X##_f[_i];							\    _s |= X##_f[_i] << _up;						\/* s is now != 0 if we want to set the LSbit */                         \    for (_i = 0; _i < 3-_skip; ++_i)					\      X##_f[_i] = X##_f[_i+_skip] >> _down | X##_f[_i+_skip+1] << _up;	\    X##_f[_i] = X##_f[3] >> _down;					\    for (++_i; _i < 4; ++_i)						\      X##_f[_i] = 0;							\    /* don't fix the LSB until the very end when we're sure f[0] is stable */ \    X##_f[0] |= (_s != 0);                                              \  } while (0)#define _FP_FRAC_ADD_4(R,X,Y)						\  __FP_FRAC_ADD_4(R##_f[3], R##_f[2], R##_f[1], R##_f[0],		\		  X##_f[3], X##_f[2], X##_f[1], X##_f[0],		\		  Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])#define _FP_FRAC_SUB_4(R,X,Y)                                           \  __FP_FRAC_SUB_4(R##_f[3], R##_f[2], R##_f[1], R##_f[0],		\		  X##_f[3], X##_f[2], X##_f[1], X##_f[0],		\		  Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])#define _FP_FRAC_ADDI_4(X,I)                                            \  __FP_FRAC_ADDI_4(X##_f[3], X##_f[2], X##_f[1], X##_f[0], I)#define _FP_ZEROFRAC_4  0,0,0,0#define _FP_MINFRAC_4   0,0,0,1#define _FP_FRAC_ZEROP_4(X)     ((X##_f[0] | X##_f[1] | X##_f[2] | X##_f[3]) == 0)#define _FP_FRAC_NEGP_4(X)      ((_FP_WS_TYPE)X##_f[3] < 0)#define _FP_FRAC_OVERP_4(fs,X)  (X##_f[0] & _FP_OVERFLOW_##fs)#define _FP_FRAC_EQ_4(X,Y)                              \ (X##_f[0] == Y##_f[0] && X##_f[1] == Y##_f[1]          \  && X##_f[2] == Y##_f[2] && X##_f[3] == Y##_f[3])#define _FP_FRAC_GT_4(X,Y)                              \ (X##_f[3] > Y##_f[3] ||                                \  (X##_f[3] == Y##_f[3] && (X##_f[2] > Y##_f[2] ||      \   (X##_f[2] == Y##_f[2] && (X##_f[1] > Y##_f[1] ||     \    (X##_f[1] == Y##_f[1] && X##_f[0] > Y##_f[0])       \   ))                                                   \  ))                                                    \ )#define _FP_FRAC_GE_4(X,Y)                              \ (X##_f[3] > Y##_f[3] ||                                \  (X##_f[3] == Y##_f[3] && (X##_f[2] > Y##_f[2] ||      \   (X##_f[2] == Y##_f[2] && (X##_f[1] > Y##_f[1] ||     \    (X##_f[1] == Y##_f[1] && X##_f[0] >= Y##_f[0])      \   ))                                                   \  ))                                                    \ )#define _FP_FRAC_CLZ_4(R,X)             \  do {                                  \    if (X##_f[3])                       \    {                                   \        __FP_CLZ(R,X##_f[3]);           \    }                                   \    else if (X##_f[2])                  \    {                                   \        __FP_CLZ(R,X##_f[2]);           \        R += _FP_W_TYPE_SIZE;           \    }                                   \    else if (X##_f[1])                  \    {                                   \        __FP_CLZ(R,X##_f[2]);           \        R += _FP_W_TYPE_SIZE*2;         \    }                                   \    else                                \    {                                   \        __FP_CLZ(R,X##_f[0]);           \        R += _FP_W_TYPE_SIZE*3;         \    }                                   \  } while(0)#define _FP_UNPACK_RAW_4(fs, X, val)                            \  do {                                                          \    union _FP_UNION_##fs _flo; _flo.flt = (val);        	\    X##_f[0] = _flo.bits.frac0;                                 \    X##_f[1] = _flo.bits.frac1;                                 \    X##_f[2] = _flo.bits.frac2;                                 \    X##_f[3] = _flo.bits.frac3;                                 \    X##_e  = _flo.bits.exp;                                     \    X##_s  = _flo.bits.sign;                                    \  } while (0)#define _FP_PACK_RAW_4(fs, val, X)                              \  do {                                                          \    union _FP_UNION_##fs _flo;					\    _flo.bits.frac0 = X##_f[0];                                 \    _flo.bits.frac1 = X##_f[1];                                 \    _flo.bits.frac2 = X##_f[2];                                 \    _flo.bits.frac3 = X##_f[3];                                 \    _flo.bits.exp   = X##_e;                                    \    _flo.bits.sign  = X##_s;                                    \    (val) = _flo.flt;                                   	\  } while (0)/* * Internals  */#define __FP_FRAC_SET_4(X,I3,I2,I1,I0)					\  (X##_f[3] = I3, X##_f[2] = I2, X##_f[1] = I1, X##_f[0] = I0)#ifndef __FP_FRAC_ADD_4#define __FP_FRAC_ADD_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0)		\  (r0 = x0 + y0,							\   r1 = x1 + y1 + (r0 < x0),						\   r2 = x2 + y2 + (r1 < x1),						\   r3 = x3 + y3 + (r2 < x2))#endif#ifndef __FP_FRAC_SUB_4#define __FP_FRAC_SUB_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0)		\  (r0 = x0 - y0,                                                        \   r1 = x1 - y1 - (r0 > x0),                                            \   r2 = x2 - y2 - (r1 > x1),                                            \   r3 = x3 - y3 - (r2 > x2))#endif#ifndef __FP_FRAC_ADDI_4/* I always wanted to be a lisp programmer :-> */#define __FP_FRAC_ADDI_4(x3,x2,x1,x0,i)                                 \  (x3 += ((x2 += ((x1 += ((x0 += i) < x0)) < x1) < x2)))#endif/* Convert FP values between word sizes. This appears to be more * complicated than I'd have expected it to be, so these might be * wrong... These macros are in any case somewhat bogus because they * use information about what various FRAC_n variables look like  * internally [eg, that 2 word vars are X_f0 and x_f1]. But so do * the ones in op-2.h and op-1.h.  */#define _FP_FRAC_CONV_1_4(dfs, sfs, D, S)                               \   do {                                                                 \     _FP_FRAC_SRS_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs),     \                        _FP_WFRACBITS_##sfs);                           \     D##_f = S##_f[0];                                                   \  } while (0)#define _FP_FRAC_CONV_2_4(dfs, sfs, D, S)                               \   do {                                                                 \     _FP_FRAC_SRS_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs),     \                        _FP_WFRACBITS_##sfs);                           \     D##_f0 = S##_f[0];                                                  \     D##_f1 = S##_f[1];                                                  \  } while (0)/* Assembly/disassembly for converting to/from integral types.   * No shifting or overflow handled here. *//* Put the FP value X into r, which is an integer of size rsize. */#define _FP_FRAC_ASSEMBLE_4(r, X, rsize)                                \  do {                                                                  \    if (rsize <= _FP_W_TYPE_SIZE)                                       \      r = X##_f[0];                                                     \    else if (rsize <= 2*_FP_W_TYPE_SIZE)                                \    {                                                                   \      r = X##_f[1];                                                     \      r <<= _FP_W_TYPE_SIZE;                                            \      r += X##_f[0];                                                    \    }                                                                   \    else                                                                \    {                                                                   \      /* I'm feeling lazy so we deal with int == 3words (implausible)*/ \      /* and int == 4words as a single case.                         */ \      r = X##_f[3];                                                     \      r <<= _FP_W_TYPE_SIZE;                                            \      r += X##_f[2];                                                    \      r <<= _FP_W_TYPE_SIZE;                                            \      r += X##_f[1];                                                    \      r <<= _FP_W_TYPE_SIZE;                                            \      r += X##_f[0];                                                    \    }                                                                   \  } while (0)/* "No disassemble Number Five!" *//* move an integer of size rsize into X's fractional part. We rely on * the _f[] array consisting of words of size _FP_W_TYPE_SIZE to avoid * having to mask the values we store into it. */#define _FP_FRAC_DISASSEMBLE_4(X, r, rsize)                             \  do {                                                                  \    X##_f[0] = r;                                                       \    X##_f[1] = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE);   \    X##_f[2] = (rsize <= 2*_FP_W_TYPE_SIZE ? 0 : r >> 2*_FP_W_TYPE_SIZE); \    X##_f[3] = (rsize <= 3*_FP_W_TYPE_SIZE ? 0 : r >> 3*_FP_W_TYPE_SIZE); \  } while (0);#define _FP_FRAC_CONV_4_1(dfs, sfs, D, S)                               \   do {                                                                 \     D##_f[0] = S##_f;                                                  \     D##_f[1] = D##_f[2] = D##_f[3] = 0;                                \     _FP_FRAC_SLL_4(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs));    \   } while (0)#define _FP_FRAC_CONV_4_2(dfs, sfs, D, S)                               \   do {                                                                 \     D##_f[0] = S##_f0;                                                 \     D##_f[1] = S##_f1;                                                 \     D##_f[2] = D##_f[3] = 0;                                           \     _FP_FRAC_SLL_4(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs));    \   } while (0)/* FIXME! This has to be written */#define _FP_SQRT_MEAT_4(R, S, T, X, q)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -