⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 smpboot.c

📁 上传linux-jx2410的源代码
💻 C
字号:
/* * SMP boot-related support * * Copyright (C) 2001 David Mosberger-Tang <davidm@hpl.hp.com> * * 01/05/16 Rohit Seth <rohit.seth@intel.com>	Moved SMP booting functions from smp.c to here. * 01/04/27 David Mosberger <davidm@hpl.hp.com>	Added ITC synching code. */#define __KERNEL_SYSCALLS__#include <linux/config.h>#include <linux/bootmem.h>#include <linux/delay.h>#include <linux/init.h>#include <linux/interrupt.h>#include <linux/irq.h>#include <linux/kernel.h>#include <linux/kernel_stat.h>#include <linux/mm.h>#include <linux/smp.h>#include <linux/smp_lock.h>#include <linux/spinlock.h>#include <asm/atomic.h>#include <asm/bitops.h>#include <asm/cache.h>#include <asm/current.h>#include <asm/delay.h>#include <asm/efi.h>#include <asm/io.h>#include <asm/irq.h>#include <asm/machvec.h>#include <asm/mca.h>#include <asm/page.h>#include <asm/pgalloc.h>#include <asm/pgtable.h>#include <asm/processor.h>#include <asm/ptrace.h>#include <asm/sal.h>#include <asm/system.h>#include <asm/unistd.h>#define SMP_DEBUG 0#if SMP_DEBUG#define Dprintk(x...)  printk(x)#else#define Dprintk(x...)#endif/* * ITC synchronization related stuff: */#define MASTER	0#define SLAVE	(SMP_CACHE_BYTES/8)#define NUM_ROUNDS	64	/* magic value */#define NUM_ITERS	5	/* likewise */static spinlock_t itc_sync_lock = SPIN_LOCK_UNLOCKED;static volatile unsigned long go[SLAVE + 1];#define DEBUG_ITC_SYNC	0extern void __init calibrate_delay(void);extern void start_ap(void);int cpucount;/* Setup configured maximum number of CPUs to activate */static int max_cpus = -1;/* Total count of live CPUs */int smp_num_cpus = 1;/* Bitmask of currently online CPUs */volatile unsigned long cpu_online_map;/* which logical CPU number maps to which CPU (physical APIC ID) */volatile int ia64_cpu_to_sapicid[NR_CPUS];static volatile unsigned long cpu_callin_map;struct smp_boot_data smp_boot_data __initdata;/* Set when the idlers are all forked */volatile int smp_threads_ready;unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */char __initdata no_int_routing;unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? *//* * Setup routine for controlling SMP activation * * Command-line option of "nosmp" or "maxcpus=0" will disable SMP * activation entirely (the MPS table probe still happens, though). * * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer * greater than 0, limits the maximum number of CPUs activated in * SMP mode to <NUM>. */static int __initnosmp (char *str){	max_cpus = 0;	return 1;}__setup("nosmp", nosmp);static int __initmaxcpus (char *str){	get_option(&str, &max_cpus);	return 1;}__setup("maxcpus=", maxcpus);static int __initnointroute (char *str){	no_int_routing = 1;	return 1;}__setup("nointroute", nointroute);voidsync_master (void *arg){	unsigned long flags, i;	go[MASTER] = 0;	local_irq_save(flags);	{		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {			while (!go[MASTER]);			go[MASTER] = 0;			go[SLAVE] = ia64_get_itc();		}	}	local_irq_restore(flags);}/* * Return the number of cycles by which our itc differs from the itc on the master * (time-keeper) CPU.  A positive number indicates our itc is ahead of the master, * negative that it is behind. */static inline longget_delta (long *rt, long *master){	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;	unsigned long tcenter, t0, t1, tm;	long i;	for (i = 0; i < NUM_ITERS; ++i) {		t0 = ia64_get_itc();		go[MASTER] = 1;		while (!(tm = go[SLAVE]));		go[SLAVE] = 0;		t1 = ia64_get_itc();		if (t1 - t0 < best_t1 - best_t0)			best_t0 = t0, best_t1 = t1, best_tm = tm;	}	*rt = best_t1 - best_t0;	*master = best_tm - best_t0;	/* average best_t0 and best_t1 without overflow: */	tcenter = (best_t0/2 + best_t1/2);	if (best_t0 % 2 + best_t1 % 2 == 2)		++tcenter;	return tcenter - best_tm;}/* * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU * (normally the time-keeper CPU).  We use a closed loop to eliminate the possibility of * unaccounted-for errors (such as getting a machine check in the middle of a calibration * step).  The basic idea is for the slave to ask the master what itc value it has and to * read its own itc before and after the master responds.  Each iteration gives us three * timestamps: * *	slave		master * *	t0 ---\ *             ---\ *		   ---> *			tm *		   /--- *	       /--- *	t1 <--- * * * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0 * and t1.  If we achieve this, the clocks are synchronized provided the interconnect * between the slave and the master is symmetric.  Even if the interconnect were * asymmetric, we would still know that the synchronization error is smaller than the * roundtrip latency (t0 - t1). * * When the interconnect is quiet and symmetric, this lets us synchronize the itc to * within one or two cycles.  However, we can only *guarantee* that the synchronization is * accurate to within a round-trip time, which is typically in the range of several * hundred cycles (e.g., ~500 cycles).  In practice, this means that the itc's are usually * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better * than half a micro second or so. */voidia64_sync_itc (unsigned int master){	long i, delta, adj, adjust_latency = 0, done = 0;	unsigned long flags, rt, master_time_stamp, bound;#if DEBUG_ITC_SYNC	struct {		long rt;	/* roundtrip time */		long master;	/* master's timestamp */		long diff;	/* difference between midpoint and master's timestamp */		long lat;	/* estimate of itc adjustment latency */	} t[NUM_ROUNDS];#endif	go[MASTER] = 1;	if (smp_call_function_single(master, sync_master, NULL, 1, 0) < 0) {		printk("sync_itc: failed to get attention of CPU %u!\n", master);		return;	}	while (go[MASTER]);	/* wait for master to be ready */	spin_lock_irqsave(&itc_sync_lock, flags);	{		for (i = 0; i < NUM_ROUNDS; ++i) {			delta = get_delta(&rt, &master_time_stamp);			if (delta == 0) {				done = 1;	/* let's lock on to this... */				bound = rt;			}			if (!done) {				if (i > 0) {					adjust_latency += -delta;					adj = -delta + adjust_latency/4;				} else					adj = -delta;				ia64_set_itc(ia64_get_itc() + adj);			}#if DEBUG_ITC_SYNC			t[i].rt = rt;			t[i].master = master_time_stamp;			t[i].diff = delta;			t[i].lat = adjust_latency/4;#endif		}	}	spin_unlock_irqrestore(&itc_sync_lock, flags);#if DEBUG_ITC_SYNC	for (i = 0; i < NUM_ROUNDS; ++i)		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",		       t[i].rt, t[i].master, t[i].diff, t[i].lat);#endif	printk("CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, maxerr %lu cycles)\n",	       smp_processor_id(), master, delta, rt);}/* * Ideally sets up per-cpu profiling hooks.  Doesn't do much now... */static inline void __initsmp_setup_percpu_timer (void){	local_cpu_data->prof_counter = 1;	local_cpu_data->prof_multiplier = 1;}/* * Architecture specific routine called by the kernel just before init is * fired off. This allows the BP to have everything in order [we hope]. * At the end of this all the APs will hit the system scheduling and off * we go. Each AP will jump through the kernel * init into idle(). At this point the scheduler will one day take over * and give them jobs to do. smp_callin is a standard routine * we use to track CPUs as they power up. */static volatile atomic_t smp_commenced = ATOMIC_INIT(0);void __initsmp_commence (void){	/*	 * Lets the callins below out of their loop.	 */	Dprintk("Setting commenced=1, go go go\n");	wmb();	atomic_set(&smp_commenced,1);}static void __initsmp_callin (void){	int cpuid, phys_id;	extern void ia64_init_itm(void);#ifdef CONFIG_PERFMON	extern void perfmon_init_percpu(void);#endif	cpuid = smp_processor_id();	phys_id = hard_smp_processor_id();	if (test_and_set_bit(cpuid, &cpu_online_map)) {		printk("huh, phys CPU#0x%x, CPU#0x%x already present??\n", phys_id, cpuid);		BUG();	}	smp_setup_percpu_timer();	/*	 * Synchronize the ITC with the BP	 */	Dprintk("Going to syncup ITC with BP.\n");	ia64_sync_itc(0);	/*	 * Get our bogomips.	 */	ia64_init_itm();#ifdef CONFIG_IA64_MCA	ia64_mca_cmc_vector_setup();	/* Setup vector on AP & enable */	ia64_mca_check_errors();	/* For post-failure MCA error logging */#endif#ifdef CONFIG_PERFMON	perfmon_init_percpu();#endif	local_irq_enable();	calibrate_delay();	local_cpu_data->loops_per_jiffy = loops_per_jiffy;	/*	 * Allow the master to continue.	 */	set_bit(cpuid, &cpu_callin_map);	Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);}/* * Activate a secondary processor.  head.S calls this. */int __initstart_secondary (void *unused){	extern int cpu_idle (void);	Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());	efi_map_pal_code();	cpu_init();	smp_callin();	Dprintk("CPU %d is set to go.\n", smp_processor_id());	while (!atomic_read(&smp_commenced))		;	Dprintk("CPU %d is starting idle.\n", smp_processor_id());	return cpu_idle();}static int __initfork_by_hand (void){	/*	 * don't care about the eip and regs settings since	 * we'll never reschedule the forked task.	 */	return do_fork(CLONE_VM|CLONE_PID, 0, 0, 0);}static void __initdo_boot_cpu (int sapicid){	struct task_struct *idle;	int timeout, cpu;	cpu = ++cpucount;	/*	 * We can't use kernel_thread since we must avoid to	 * reschedule the child.	 */	if (fork_by_hand() < 0)		panic("failed fork for CPU %d", cpu);	/*	 * We remove it from the pidhash and the runqueue	 * once we got the process:	 */	idle = init_task.prev_task;	if (!idle)		panic("No idle process for CPU %d", cpu);	idle->processor = cpu;	ia64_cpu_to_sapicid[cpu] = sapicid;	idle->cpus_runnable = 1 << cpu; /* we schedule the first task manually */	del_from_runqueue(idle);	unhash_process(idle);	init_tasks[cpu] = idle;	Dprintk("Sending wakeup vector %u to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);	platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);	/*	 * Wait 10s total for the AP to start	 */	Dprintk("Waiting on callin_map ...");	for (timeout = 0; timeout < 100000; timeout++) {		if (test_bit(cpu, &cpu_callin_map))			break;  /* It has booted */		udelay(100);	}	Dprintk("\n");	if (test_bit(cpu, &cpu_callin_map)) {		/* number CPUs logically, starting from 1 (BSP is 0) */		printk("CPU%d: ", cpu);		/*print_cpu_info(&cpu_data[cpu]); */		printk("CPU has booted.\n");	} else {		printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);		ia64_cpu_to_sapicid[cpu] = -1;		cpucount--;	}}/* * Cycle through the APs sending Wakeup IPIs to boot each. */void __initsmp_boot_cpus (void){	int sapicid, cpu;	int boot_cpu_id = hard_smp_processor_id();	/*	 * Initialize the logical to physical CPU number mapping	 * and the per-CPU profiling counter/multiplier	 */	for (cpu = 0; cpu < NR_CPUS; cpu++)		ia64_cpu_to_sapicid[cpu] = -1;	smp_setup_percpu_timer();	/*	* We have the boot CPU online for sure.	*/	set_bit(0, &cpu_online_map);	set_bit(0, &cpu_callin_map);	local_cpu_data->loops_per_jiffy = loops_per_jiffy;	ia64_cpu_to_sapicid[0] = boot_cpu_id;	printk("Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);	global_irq_holder = 0;	current->processor = 0;	init_idle();	/*	 * If SMP should be disabled, then really disable it!	 */	if (!max_cpus || (max_cpus < -1)) {		printk(KERN_INFO "SMP mode deactivated.\n");		cpu_online_map =  1;		smp_num_cpus = 1;		goto smp_done;	}	if  (max_cpus != -1)		printk (KERN_INFO "Limiting CPUs to %d\n", max_cpus);	if (smp_boot_data.cpu_count > 1) {		printk(KERN_INFO "SMP: starting up secondaries.\n");		for (cpu = 0; cpu < smp_boot_data.cpu_count; cpu++) {			/*			 * Don't even attempt to start the boot CPU!			 */			sapicid = smp_boot_data.cpu_phys_id[cpu];			if ((sapicid == -1) || (sapicid == hard_smp_processor_id()))				continue;			if ((max_cpus > 0) && (cpucount + 1 >= max_cpus))				break;			do_boot_cpu(sapicid);			/*			 * Make sure we unmap all failed CPUs			 */			if (ia64_cpu_to_sapicid[cpu] == -1)				printk("phys CPU#%d not responding - cannot use it.\n", cpu);		}		smp_num_cpus = cpucount + 1;		/*		 * Allow the user to impress friends.		 */		printk("Before bogomips.\n");		if (!cpucount) {			printk(KERN_ERR "Error: only one processor found.\n");		} else {			unsigned long bogosum = 0;  			for (cpu = 0; cpu < NR_CPUS; cpu++)				if (cpu_online_map & (1<<cpu))					bogosum += cpu_data(cpu)->loops_per_jiffy;			printk(KERN_INFO"Total of %d processors activated (%lu.%02lu BogoMIPS).\n",			       cpucount + 1, bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);		}	}  smp_done:	;}/* * Assume that CPU's have been discovered by some platform-dependant interface.  For * SoftSDV/Lion, that would be ACPI. * * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP(). */void __initinit_smp_config(void){	struct fptr {		unsigned long fp;		unsigned long gp;	} *ap_startup;	long sal_ret;	/* Tell SAL where to drop the AP's.  */	ap_startup = (struct fptr *) start_ap;	sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,				       __pa(ap_startup->fp), __pa(ap_startup->gp), 0, 0, 0, 0);	if (sal_ret < 0) {		printk("SMP: Can't set SAL AP Boot Rendezvous: %s\n     Forcing UP mode\n",		       ia64_sal_strerror(sal_ret));		max_cpus = 0;		smp_num_cpus = 1;	}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -