📄 smpboot.c
字号:
/* * SMP boot-related support * * Copyright (C) 2001 David Mosberger-Tang <davidm@hpl.hp.com> * * 01/05/16 Rohit Seth <rohit.seth@intel.com> Moved SMP booting functions from smp.c to here. * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code. */#define __KERNEL_SYSCALLS__#include <linux/config.h>#include <linux/bootmem.h>#include <linux/delay.h>#include <linux/init.h>#include <linux/interrupt.h>#include <linux/irq.h>#include <linux/kernel.h>#include <linux/kernel_stat.h>#include <linux/mm.h>#include <linux/smp.h>#include <linux/smp_lock.h>#include <linux/spinlock.h>#include <asm/atomic.h>#include <asm/bitops.h>#include <asm/cache.h>#include <asm/current.h>#include <asm/delay.h>#include <asm/efi.h>#include <asm/io.h>#include <asm/irq.h>#include <asm/machvec.h>#include <asm/mca.h>#include <asm/page.h>#include <asm/pgalloc.h>#include <asm/pgtable.h>#include <asm/processor.h>#include <asm/ptrace.h>#include <asm/sal.h>#include <asm/system.h>#include <asm/unistd.h>#define SMP_DEBUG 0#if SMP_DEBUG#define Dprintk(x...) printk(x)#else#define Dprintk(x...)#endif/* * ITC synchronization related stuff: */#define MASTER 0#define SLAVE (SMP_CACHE_BYTES/8)#define NUM_ROUNDS 64 /* magic value */#define NUM_ITERS 5 /* likewise */static spinlock_t itc_sync_lock = SPIN_LOCK_UNLOCKED;static volatile unsigned long go[SLAVE + 1];#define DEBUG_ITC_SYNC 0extern void __init calibrate_delay(void);extern void start_ap(void);int cpucount;/* Setup configured maximum number of CPUs to activate */static int max_cpus = -1;/* Total count of live CPUs */int smp_num_cpus = 1;/* Bitmask of currently online CPUs */volatile unsigned long cpu_online_map;/* which logical CPU number maps to which CPU (physical APIC ID) */volatile int ia64_cpu_to_sapicid[NR_CPUS];static volatile unsigned long cpu_callin_map;struct smp_boot_data smp_boot_data __initdata;/* Set when the idlers are all forked */volatile int smp_threads_ready;unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */char __initdata no_int_routing;unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? *//* * Setup routine for controlling SMP activation * * Command-line option of "nosmp" or "maxcpus=0" will disable SMP * activation entirely (the MPS table probe still happens, though). * * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer * greater than 0, limits the maximum number of CPUs activated in * SMP mode to <NUM>. */static int __initnosmp (char *str){ max_cpus = 0; return 1;}__setup("nosmp", nosmp);static int __initmaxcpus (char *str){ get_option(&str, &max_cpus); return 1;}__setup("maxcpus=", maxcpus);static int __initnointroute (char *str){ no_int_routing = 1; return 1;}__setup("nointroute", nointroute);voidsync_master (void *arg){ unsigned long flags, i; go[MASTER] = 0; local_irq_save(flags); { for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) { while (!go[MASTER]); go[MASTER] = 0; go[SLAVE] = ia64_get_itc(); } } local_irq_restore(flags);}/* * Return the number of cycles by which our itc differs from the itc on the master * (time-keeper) CPU. A positive number indicates our itc is ahead of the master, * negative that it is behind. */static inline longget_delta (long *rt, long *master){ unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0; unsigned long tcenter, t0, t1, tm; long i; for (i = 0; i < NUM_ITERS; ++i) { t0 = ia64_get_itc(); go[MASTER] = 1; while (!(tm = go[SLAVE])); go[SLAVE] = 0; t1 = ia64_get_itc(); if (t1 - t0 < best_t1 - best_t0) best_t0 = t0, best_t1 = t1, best_tm = tm; } *rt = best_t1 - best_t0; *master = best_tm - best_t0; /* average best_t0 and best_t1 without overflow: */ tcenter = (best_t0/2 + best_t1/2); if (best_t0 % 2 + best_t1 % 2 == 2) ++tcenter; return tcenter - best_tm;}/* * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU * (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of * unaccounted-for errors (such as getting a machine check in the middle of a calibration * step). The basic idea is for the slave to ask the master what itc value it has and to * read its own itc before and after the master responds. Each iteration gives us three * timestamps: * * slave master * * t0 ---\ * ---\ * ---> * tm * /--- * /--- * t1 <--- * * * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0 * and t1. If we achieve this, the clocks are synchronized provided the interconnect * between the slave and the master is symmetric. Even if the interconnect were * asymmetric, we would still know that the synchronization error is smaller than the * roundtrip latency (t0 - t1). * * When the interconnect is quiet and symmetric, this lets us synchronize the itc to * within one or two cycles. However, we can only *guarantee* that the synchronization is * accurate to within a round-trip time, which is typically in the range of several * hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better * than half a micro second or so. */voidia64_sync_itc (unsigned int master){ long i, delta, adj, adjust_latency = 0, done = 0; unsigned long flags, rt, master_time_stamp, bound;#if DEBUG_ITC_SYNC struct { long rt; /* roundtrip time */ long master; /* master's timestamp */ long diff; /* difference between midpoint and master's timestamp */ long lat; /* estimate of itc adjustment latency */ } t[NUM_ROUNDS];#endif go[MASTER] = 1; if (smp_call_function_single(master, sync_master, NULL, 1, 0) < 0) { printk("sync_itc: failed to get attention of CPU %u!\n", master); return; } while (go[MASTER]); /* wait for master to be ready */ spin_lock_irqsave(&itc_sync_lock, flags); { for (i = 0; i < NUM_ROUNDS; ++i) { delta = get_delta(&rt, &master_time_stamp); if (delta == 0) { done = 1; /* let's lock on to this... */ bound = rt; } if (!done) { if (i > 0) { adjust_latency += -delta; adj = -delta + adjust_latency/4; } else adj = -delta; ia64_set_itc(ia64_get_itc() + adj); }#if DEBUG_ITC_SYNC t[i].rt = rt; t[i].master = master_time_stamp; t[i].diff = delta; t[i].lat = adjust_latency/4;#endif } } spin_unlock_irqrestore(&itc_sync_lock, flags);#if DEBUG_ITC_SYNC for (i = 0; i < NUM_ROUNDS; ++i) printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n", t[i].rt, t[i].master, t[i].diff, t[i].lat);#endif printk("CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);}/* * Ideally sets up per-cpu profiling hooks. Doesn't do much now... */static inline void __initsmp_setup_percpu_timer (void){ local_cpu_data->prof_counter = 1; local_cpu_data->prof_multiplier = 1;}/* * Architecture specific routine called by the kernel just before init is * fired off. This allows the BP to have everything in order [we hope]. * At the end of this all the APs will hit the system scheduling and off * we go. Each AP will jump through the kernel * init into idle(). At this point the scheduler will one day take over * and give them jobs to do. smp_callin is a standard routine * we use to track CPUs as they power up. */static volatile atomic_t smp_commenced = ATOMIC_INIT(0);void __initsmp_commence (void){ /* * Lets the callins below out of their loop. */ Dprintk("Setting commenced=1, go go go\n"); wmb(); atomic_set(&smp_commenced,1);}static void __initsmp_callin (void){ int cpuid, phys_id; extern void ia64_init_itm(void);#ifdef CONFIG_PERFMON extern void perfmon_init_percpu(void);#endif cpuid = smp_processor_id(); phys_id = hard_smp_processor_id(); if (test_and_set_bit(cpuid, &cpu_online_map)) { printk("huh, phys CPU#0x%x, CPU#0x%x already present??\n", phys_id, cpuid); BUG(); } smp_setup_percpu_timer(); /* * Synchronize the ITC with the BP */ Dprintk("Going to syncup ITC with BP.\n"); ia64_sync_itc(0); /* * Get our bogomips. */ ia64_init_itm();#ifdef CONFIG_IA64_MCA ia64_mca_cmc_vector_setup(); /* Setup vector on AP & enable */ ia64_mca_check_errors(); /* For post-failure MCA error logging */#endif#ifdef CONFIG_PERFMON perfmon_init_percpu();#endif local_irq_enable(); calibrate_delay(); local_cpu_data->loops_per_jiffy = loops_per_jiffy; /* * Allow the master to continue. */ set_bit(cpuid, &cpu_callin_map); Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);}/* * Activate a secondary processor. head.S calls this. */int __initstart_secondary (void *unused){ extern int cpu_idle (void); Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id()); efi_map_pal_code(); cpu_init(); smp_callin(); Dprintk("CPU %d is set to go.\n", smp_processor_id()); while (!atomic_read(&smp_commenced)) ; Dprintk("CPU %d is starting idle.\n", smp_processor_id()); return cpu_idle();}static int __initfork_by_hand (void){ /* * don't care about the eip and regs settings since * we'll never reschedule the forked task. */ return do_fork(CLONE_VM|CLONE_PID, 0, 0, 0);}static void __initdo_boot_cpu (int sapicid){ struct task_struct *idle; int timeout, cpu; cpu = ++cpucount; /* * We can't use kernel_thread since we must avoid to * reschedule the child. */ if (fork_by_hand() < 0) panic("failed fork for CPU %d", cpu); /* * We remove it from the pidhash and the runqueue * once we got the process: */ idle = init_task.prev_task; if (!idle) panic("No idle process for CPU %d", cpu); idle->processor = cpu; ia64_cpu_to_sapicid[cpu] = sapicid; idle->cpus_runnable = 1 << cpu; /* we schedule the first task manually */ del_from_runqueue(idle); unhash_process(idle); init_tasks[cpu] = idle; Dprintk("Sending wakeup vector %u to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid); platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0); /* * Wait 10s total for the AP to start */ Dprintk("Waiting on callin_map ..."); for (timeout = 0; timeout < 100000; timeout++) { if (test_bit(cpu, &cpu_callin_map)) break; /* It has booted */ udelay(100); } Dprintk("\n"); if (test_bit(cpu, &cpu_callin_map)) { /* number CPUs logically, starting from 1 (BSP is 0) */ printk("CPU%d: ", cpu); /*print_cpu_info(&cpu_data[cpu]); */ printk("CPU has booted.\n"); } else { printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid); ia64_cpu_to_sapicid[cpu] = -1; cpucount--; }}/* * Cycle through the APs sending Wakeup IPIs to boot each. */void __initsmp_boot_cpus (void){ int sapicid, cpu; int boot_cpu_id = hard_smp_processor_id(); /* * Initialize the logical to physical CPU number mapping * and the per-CPU profiling counter/multiplier */ for (cpu = 0; cpu < NR_CPUS; cpu++) ia64_cpu_to_sapicid[cpu] = -1; smp_setup_percpu_timer(); /* * We have the boot CPU online for sure. */ set_bit(0, &cpu_online_map); set_bit(0, &cpu_callin_map); local_cpu_data->loops_per_jiffy = loops_per_jiffy; ia64_cpu_to_sapicid[0] = boot_cpu_id; printk("Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id); global_irq_holder = 0; current->processor = 0; init_idle(); /* * If SMP should be disabled, then really disable it! */ if (!max_cpus || (max_cpus < -1)) { printk(KERN_INFO "SMP mode deactivated.\n"); cpu_online_map = 1; smp_num_cpus = 1; goto smp_done; } if (max_cpus != -1) printk (KERN_INFO "Limiting CPUs to %d\n", max_cpus); if (smp_boot_data.cpu_count > 1) { printk(KERN_INFO "SMP: starting up secondaries.\n"); for (cpu = 0; cpu < smp_boot_data.cpu_count; cpu++) { /* * Don't even attempt to start the boot CPU! */ sapicid = smp_boot_data.cpu_phys_id[cpu]; if ((sapicid == -1) || (sapicid == hard_smp_processor_id())) continue; if ((max_cpus > 0) && (cpucount + 1 >= max_cpus)) break; do_boot_cpu(sapicid); /* * Make sure we unmap all failed CPUs */ if (ia64_cpu_to_sapicid[cpu] == -1) printk("phys CPU#%d not responding - cannot use it.\n", cpu); } smp_num_cpus = cpucount + 1; /* * Allow the user to impress friends. */ printk("Before bogomips.\n"); if (!cpucount) { printk(KERN_ERR "Error: only one processor found.\n"); } else { unsigned long bogosum = 0; for (cpu = 0; cpu < NR_CPUS; cpu++) if (cpu_online_map & (1<<cpu)) bogosum += cpu_data(cpu)->loops_per_jiffy; printk(KERN_INFO"Total of %d processors activated (%lu.%02lu BogoMIPS).\n", cpucount + 1, bogosum/(500000/HZ), (bogosum/(5000/HZ))%100); } } smp_done: ;}/* * Assume that CPU's have been discovered by some platform-dependant interface. For * SoftSDV/Lion, that would be ACPI. * * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP(). */void __initinit_smp_config(void){ struct fptr { unsigned long fp; unsigned long gp; } *ap_startup; long sal_ret; /* Tell SAL where to drop the AP's. */ ap_startup = (struct fptr *) start_ap; sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ, __pa(ap_startup->fp), __pa(ap_startup->gp), 0, 0, 0, 0); if (sal_ret < 0) { printk("SMP: Can't set SAL AP Boot Rendezvous: %s\n Forcing UP mode\n", ia64_sal_strerror(sal_ret)); max_cpus = 0; smp_num_cpus = 1; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -