📄 entry.s
字号:
/* * ia64/kernel/entry.S * * Kernel entry points. * * Copyright (C) 1998-2001 Hewlett-Packard Co * David Mosberger-Tang <davidm@hpl.hp.com> * Copyright (C) 1999 VA Linux Systems * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> * Copyright (C) 1999 Asit Mallick <Asit.K.Mallick@intel.com> * Copyright (C) 1999 Don Dugger <Don.Dugger@intel.com> *//* * ia64_switch_to now places correct virtual mapping in in TR2 for * kernel stack. This allows us to handle interrupts without changing * to physical mode. * * Jonathan Nicklin <nicklin@missioncriticallinux.com> * Patrick O'Rourke <orourke@missioncriticallinux.com> * 11/07/2000 //* * Global (preserved) predicate usage on syscall entry/exit path: * * pKern: See entry.h. * pUser: See entry.h. * pSys: See entry.h. * pNonSys: !pSys */#include <linux/config.h>#include <asm/cache.h>#include <asm/errno.h>#include <asm/kregs.h>#include <asm/offsets.h>#include <asm/processor.h>#include <asm/unistd.h>#include <asm/asmmacro.h>#include <asm/pgtable.h>#include "minstate.h" /* * execve() is special because in case of success, we need to * setup a null register window frame. */ENTRY(ia64_execve) .prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(3) alloc loc1=ar.pfs,3,2,4,0 mov loc0=rp .body mov out0=in0 // filename ;; // stop bit between alloc and call mov out1=in1 // argv mov out2=in2 // envp add out3=16,sp // regs br.call.sptk.many rp=sys_execve.ret0: cmp4.ge p6,p7=r8,r0 mov ar.pfs=loc1 // restore ar.pfs sxt4 r8=r8 // return 64-bit result ;; stf.spill [sp]=f0(p6) cmp.ne pKern,pUser=r0,r0 // a successful execve() lands us in user-mode... mov rp=loc0(p6) mov ar.pfs=r0 // clear ar.pfs on success(p7) br.ret.sptk.many rp /* * In theory, we'd have to zap this state only to prevent leaking of * security sensitive state (e.g., if current->mm->dumpable is zero). However, * this executes in less than 20 cycles even on Itanium, so it's not worth * optimizing for...). */ mov r4=0; mov f2=f0; mov b1=r0 mov r5=0; mov f3=f0; mov b2=r0 mov r6=0; mov f4=f0; mov b3=r0 mov r7=0; mov f5=f0; mov b4=r0 mov ar.unat=0; mov f10=f0; mov b5=r0 ldf.fill f11=[sp]; ldf.fill f12=[sp]; mov f13=f0 ldf.fill f14=[sp]; ldf.fill f15=[sp]; mov f16=f0 ldf.fill f17=[sp]; ldf.fill f18=[sp]; mov f19=f0 ldf.fill f20=[sp]; ldf.fill f21=[sp]; mov f22=f0 ldf.fill f23=[sp]; ldf.fill f24=[sp]; mov f25=f0 ldf.fill f26=[sp]; ldf.fill f27=[sp]; mov f28=f0 ldf.fill f29=[sp]; ldf.fill f30=[sp]; mov f31=f0 mov ar.lc=0 br.ret.sptk.many rpEND(ia64_execve)GLOBAL_ENTRY(sys_clone2) .prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(2) alloc r16=ar.pfs,3,2,4,0 DO_SAVE_SWITCH_STACK mov loc0=rp mov loc1=r16 // save ar.pfs across do_fork .body mov out1=in1 mov out3=in2 adds out2=IA64_SWITCH_STACK_SIZE+16,sp // out2 = ®s mov out0=in0 // out0 = clone_flags br.call.sptk.many rp=do_fork.ret1: .restore sp adds sp=IA64_SWITCH_STACK_SIZE,sp // pop the switch stack mov ar.pfs=loc1 mov rp=loc0 br.ret.sptk.many rpEND(sys_clone2)GLOBAL_ENTRY(sys_clone) .prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(2) alloc r16=ar.pfs,2,2,4,0 DO_SAVE_SWITCH_STACK mov loc0=rp mov loc1=r16 // save ar.pfs across do_fork .body mov out1=in1 mov out3=0 adds out2=IA64_SWITCH_STACK_SIZE+16,sp // out2 = ®s mov out0=in0 // out0 = clone_flags br.call.sptk.many rp=do_fork.ret2: .restore sp adds sp=IA64_SWITCH_STACK_SIZE,sp // pop the switch stack mov ar.pfs=loc1 mov rp=loc0 br.ret.sptk.many rpEND(sys_clone)/* * prev_task <- ia64_switch_to(struct task_struct *next) */GLOBAL_ENTRY(ia64_switch_to) .prologue alloc r16=ar.pfs,1,0,0,0 DO_SAVE_SWITCH_STACK .body adds r22=IA64_TASK_THREAD_KSP_OFFSET,r13 mov r27=IA64_KR(CURRENT_STACK) dep r20=0,in0,61,3 // physical address of "current" ;; st8 [r22]=sp // save kernel stack pointer of old task shr.u r26=r20,IA64_GRANULE_SHIFT shr.u r17=r20,KERNEL_TR_PAGE_SHIFT ;; cmp.ne p6,p7=KERNEL_TR_PAGE_NUM,r17 adds r21=IA64_TASK_THREAD_KSP_OFFSET,in0 ;; /* * If we've already mapped this task's page, we can skip doing it again. */(p6) cmp.eq p7,p6=r26,r27(p6) br.cond.dpnt .map ;;.done:(p6) ssm psr.ic // if we we had to map, renable the psr.ic bit FIRST!!! ;;(p6) srlz.d ld8 sp=[r21] // load kernel stack pointer of new task mov IA64_KR(CURRENT)=r20 // update "current" application register mov r8=r13 // return pointer to previously running task mov r13=in0 // set "current" pointer ;;(p6) ssm psr.i // renable psr.i AFTER the ic bit is serialized DO_LOAD_SWITCH_STACK#ifdef CONFIG_SMP sync.i // ensure "fc"s done by this CPU are visible on other CPUs#endif br.ret.sptk.many rp // boogie on out in new context.map: rsm psr.i | psr.ic movl r25=PAGE_KERNEL ;; srlz.d or r23=r25,r20 // construct PA | page properties mov r25=IA64_GRANULE_SHIFT<<2 ;; mov cr.itir=r25 mov cr.ifa=in0 // VA of next task... ;; mov r25=IA64_TR_CURRENT_STACK mov IA64_KR(CURRENT_STACK)=r26 // remember last page we mapped... ;; itr.d dtr[r25]=r23 // wire in new mapping... br.cond.sptk .doneEND(ia64_switch_to)/* * Note that interrupts are enabled during save_switch_stack and * load_switch_stack. This means that we may get an interrupt with * "sp" pointing to the new kernel stack while ar.bspstore is still * pointing to the old kernel backing store area. Since ar.rsc, * ar.rnat, ar.bsp, and ar.bspstore are all preserved by interrupts, * this is not a problem. Also, we don't need to specify unwind * information for preserved registers that are not modified in * save_switch_stack as the right unwind information is already * specified at the call-site of save_switch_stack. *//* * save_switch_stack: * - r16 holds ar.pfs * - b7 holds address to return to * - rp (b0) holds return address to save */GLOBAL_ENTRY(save_switch_stack) .prologue .altrp b7 flushrs // flush dirty regs to backing store (must be first in insn group) .save @priunat,r17 mov r17=ar.unat // preserve caller's .body adds r3=80,sp ;; lfetch.fault.excl.nt1 [r3],128 mov ar.rsc=0 // put RSE in mode: enforced lazy, little endian, pl 0 adds r2=16+128,sp ;; lfetch.fault.excl.nt1 [r2],128 lfetch.fault.excl.nt1 [r3],128 adds r14=SW(R4)+16,sp ;; lfetch.fault.excl [r2] lfetch.fault.excl [r3] adds r15=SW(R5)+16,sp ;; mov r18=ar.fpsr // preserve fpsr mov r19=ar.rnat add r2=SW(F2)+16,sp // r2 = &sw->f2.mem.offset 0,0; st8.spill [r14]=r4,16 // spill r4.mem.offset 8,0; st8.spill [r15]=r5,16 // spill r5 add r3=SW(F3)+16,sp // r3 = &sw->f3 ;; stf.spill [r2]=f2,32 stf.spill [r3]=f3,32 mov r21=b0.mem.offset 0,0; st8.spill [r14]=r6,16 // spill r6.mem.offset 8,0; st8.spill [r15]=r7,16 // spill r7 mov r22=b1 ;; // since we're done with the spills, read and save ar.unat: mov r29=ar.unat // M-unit mov r20=ar.bspstore // M-unit mov r23=b2 stf.spill [r2]=f4,32 stf.spill [r3]=f5,32 mov r24=b3 ;; st8 [r14]=r21,16 // save b0 st8 [r15]=r22,16 // save b1 mov r25=b4 stf.spill [r2]=f10,32 stf.spill [r3]=f11,32 mov r26=b5 ;; st8 [r14]=r23,16 // save b2 st8 [r15]=r24,16 // save b3 mov r21=ar.lc // I-unit stf.spill [r2]=f12,32 stf.spill [r3]=f13,32 ;; st8 [r14]=r25,16 // save b4 st8 [r15]=r26,16 // save b5 stf.spill [r2]=f14,32 stf.spill [r3]=f15,32 ;; st8 [r14]=r16 // save ar.pfs st8 [r15]=r21 // save ar.lc stf.spill [r2]=f16,32 stf.spill [r3]=f17,32 ;; stf.spill [r2]=f18,32 stf.spill [r3]=f19,32 ;; stf.spill [r2]=f20,32 stf.spill [r3]=f21,32 ;; stf.spill [r2]=f22,32 stf.spill [r3]=f23,32 ;; stf.spill [r2]=f24,32 stf.spill [r3]=f25,32 add r14=SW(CALLER_UNAT)+16,sp ;; stf.spill [r2]=f26,32 stf.spill [r3]=f27,32 add r15=SW(AR_FPSR)+16,sp ;; stf.spill [r2]=f28,32 stf.spill [r3]=f29,32 st8 [r14]=r17 // save caller_unat st8 [r15]=r18 // save fpsr mov r21=pr ;; stf.spill [r2]=f30,(SW(AR_UNAT)-SW(F30)) stf.spill [r3]=f31,(SW(AR_RNAT)-SW(F31)) ;; st8 [r2]=r29,16 // save ar.unat st8 [r3]=r19,16 // save ar.rnat ;; st8 [r2]=r20 // save ar.bspstore st8 [r3]=r21 // save predicate registers mov ar.rsc=3 // put RSE back into eager mode, pl 0 br.cond.sptk.many b7END(save_switch_stack)/* * load_switch_stack: * - "invala" MUST be done at call site (normally in DO_LOAD_SWITCH_STACK) * - b7 holds address to return to * - must not touch r8-r11 */ENTRY(load_switch_stack) .prologue .altrp b7 .body lfetch.fault.nt1 [sp] adds r2=SW(AR_BSPSTORE)+16,sp adds r3=SW(AR_UNAT)+16,sp mov ar.rsc=0 // put RSE into enforced lazy mode adds r14=SW(CALLER_UNAT)+16,sp adds r15=SW(AR_FPSR)+16,sp ;; ld8 r27=[r2],(SW(B0)-SW(AR_BSPSTORE)) // bspstore ld8 r29=[r3],(SW(B1)-SW(AR_UNAT)) // unat ;; ld8 r21=[r2],16 // restore b0 ld8 r22=[r3],16 // restore b1 ;; ld8 r23=[r2],16 // restore b2 ld8 r24=[r3],16 // restore b3 ;; ld8 r25=[r2],16 // restore b4 ld8 r26=[r3],16 // restore b5 ;; ld8 r16=[r2],(SW(PR)-SW(AR_PFS)) // ar.pfs ld8 r17=[r3],(SW(AR_RNAT)-SW(AR_LC)) // ar.lc ;; ld8 r28=[r2] // restore pr ld8 r30=[r3] // restore rnat ;; ld8 r18=[r14],16 // restore caller's unat ld8 r19=[r15],24 // restore fpsr ;; ldf.fill f2=[r14],32 ldf.fill f3=[r15],32 ;; ldf.fill f4=[r14],32 ldf.fill f5=[r15],32 ;; ldf.fill f10=[r14],32 ldf.fill f11=[r15],32 ;; ldf.fill f12=[r14],32 ldf.fill f13=[r15],32 ;; ldf.fill f14=[r14],32 ldf.fill f15=[r15],32 ;; ldf.fill f16=[r14],32 ldf.fill f17=[r15],32 ;; ldf.fill f18=[r14],32 ldf.fill f19=[r15],32 mov b0=r21 ;; ldf.fill f20=[r14],32 ldf.fill f21=[r15],32 mov b1=r22 ;; ldf.fill f22=[r14],32 ldf.fill f23=[r15],32 mov b2=r23 ;; mov ar.bspstore=r27 mov ar.unat=r29 // establish unat holding the NaT bits for r4-r7 mov b3=r24 ;; ldf.fill f24=[r14],32 ldf.fill f25=[r15],32 mov b4=r25 ;; ldf.fill f26=[r14],32 ldf.fill f27=[r15],32 mov b5=r26 ;; ldf.fill f28=[r14],32 ldf.fill f29=[r15],32 mov ar.pfs=r16 ;; ldf.fill f30=[r14],32 ldf.fill f31=[r15],24 mov ar.lc=r17 ;; ld8.fill r4=[r14],16 ld8.fill r5=[r15],16
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -