⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gdb-stub.c

📁 上传linux-jx2410的源代码
💻 C
📖 第 1 页 / 共 2 页
字号:
/* *  arch/mips/kernel/gdb-stub.c * *  Originally written by Glenn Engel, Lake Stevens Instrument Division * *  Contributed by HP Systems * *  Modified for SPARC by Stu Grossman, Cygnus Support. * *  Modified for Linux/MIPS (and MIPS in general) by Andreas Busse *  Send complaints, suggestions etc. to <andy@waldorf-gmbh.de> * *  Copyright (C) 1995 Andreas Busse * * $Id: gdb-stub.c,v 1.1.1.1 2004/02/04 12:55:40 laputa Exp $ *//* *  To enable debugger support, two things need to happen.  One, a *  call to set_debug_traps() is necessary in order to allow any breakpoints *  or error conditions to be properly intercepted and reported to gdb. *  Two, a breakpoint needs to be generated to begin communication.  This *  is most easily accomplished by a call to breakpoint().  Breakpoint() *  simulates a breakpoint by executing a BREAK instruction. * * *    The following gdb commands are supported: * * command          function                               Return value * *    g             return the value of the CPU registers  hex data or ENN *    G             set the value of the CPU registers     OK or ENN * *    mAA..AA,LLLL  Read LLLL bytes at address AA..AA      hex data or ENN *    MAA..AA,LLLL: Write LLLL bytes at address AA.AA      OK or ENN * *    c             Resume at current address              SNN   ( signal NN) *    cAA..AA       Continue at address AA..AA             SNN * *    s             Step one instruction                   SNN *    sAA..AA       Step one instruction from AA..AA       SNN * *    k             kill * *    ?             What was the last sigval ?             SNN   (signal NN) * *    bBB..BB	    Set baud rate to BB..BB		   OK or BNN, then sets *							   baud rate * * All commands and responses are sent with a packet which includes a * checksum.  A packet consists of * * $<packet info>#<checksum>. * * where * <packet info> :: <characters representing the command or response> * <checksum>    :: < two hex digits computed as modulo 256 sum of <packetinfo>> * * When a packet is received, it is first acknowledged with either '+' or '-'. * '+' indicates a successful transfer.  '-' indicates a failed transfer. * * Example: * * Host:                  Reply: * $m0,10#2a               +$00010203040506070809101112131415#42 * *  *  ============== *  MORE EXAMPLES: *  ============== * *  For reference -- the following are the steps that one *  company took (RidgeRun Inc) to get remote gdb debugging *  going. In this scenario the host machine was a PC and the *  target platform was a Galileo EVB64120A MIPS evaluation *  board. *    *  Step 1: *  First download gdb-5.0.tar.gz from the internet. *  and then build/install the package. *  *  Example: *    $ tar zxf gdb-5.0.tar.gz *    $ cd gdb-5.0 *    $ ./configure --target=mips-linux-elf *    $ make *    $ install *    $ which mips-linux-elf-gdb *    /usr/local/bin/mips-linux-elf-gdb *  *  Step 2: *  Configure linux for remote debugging and build it. *  *  Example: *    $ cd ~/linux *    $ make menuconfig <go to "Kernel Hacking" and turn on remote debugging> *    $ make dep; make vmlinux *  *  Step 3: *  Download the kernel to the remote target and start *  the kernel running. It will promptly halt and wait  *  for the host gdb session to connect. It does this *  since the "Kernel Hacking" option has defined  *  CONFIG_REMOTE_DEBUG which in turn enables your calls *  to: *     set_debug_traps(); *     breakpoint(); *  *  Step 4: *  Start the gdb session on the host. *  *  Example: *    $ mips-linux-elf-gdb vmlinux *    (gdb) set remotebaud 115200 *    (gdb) target remote /dev/ttyS1 *    ...at this point you are connected to  *       the remote target and can use gdb *       in the normal fasion. Setting  *       breakpoints, single stepping, *       printing variables, etc. * */#include <linux/string.h>#include <linux/kernel.h>#include <linux/signal.h>#include <linux/sched.h>#include <linux/mm.h>#include <linux/console.h>#include <linux/init.h>#include <asm/asm.h>#include <asm/mipsregs.h>#include <asm/pgtable.h>#include <asm/system.h>#include <asm/gdb-stub.h>#include <asm/inst.h>/* * external low-level support routines */extern int putDebugChar(char c);    /* write a single character      */extern char getDebugChar(void);     /* read and return a single char */extern void trap_low(void);/* * breakpoint and test functions */extern void breakpoint(void);extern void breakinst(void);extern void adel(void);/* * local prototypes */static void getpacket(char *buffer);static void putpacket(char *buffer);static int computeSignal(int tt);static int hex(unsigned char ch);static int hexToInt(char **ptr, int *intValue);static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault);void handle_exception(struct gdb_regs *regs);/* * BUFMAX defines the maximum number of characters in inbound/outbound buffers * at least NUMREGBYTES*2 are needed for register packets */#define BUFMAX 2048static char input_buffer[BUFMAX];static char output_buffer[BUFMAX];static int initialized;	/* !0 means we've been initialized */static const char hexchars[]="0123456789abcdef";/* Used to prevent crashes in memory access.  Note that they'll crash anyway if   we haven't set up fault handlers yet... */int kgdb_read_byte(unsigned *address, unsigned *dest);int kgdb_write_byte(unsigned val, unsigned *dest);/* * Convert ch from a hex digit to an int */static int hex(unsigned char ch){	if (ch >= 'a' && ch <= 'f')		return ch-'a'+10;	if (ch >= '0' && ch <= '9')		return ch-'0';	if (ch >= 'A' && ch <= 'F')		return ch-'A'+10;	return -1;}/* * scan for the sequence $<data>#<checksum> */static void getpacket(char *buffer){	unsigned char checksum;	unsigned char xmitcsum;	int i;	int count;	unsigned char ch;	do {		/*		 * wait around for the start character,		 * ignore all other characters		 */		while ((ch = (getDebugChar() & 0x7f)) != '$') ;		checksum = 0;		xmitcsum = -1;		count = 0;			/*		 * now, read until a # or end of buffer is found		 */		while (count < BUFMAX) {			ch = getDebugChar() & 0x7f;			if (ch == '#')				break;			checksum = checksum + ch;			buffer[count] = ch;			count = count + 1;		}		if (count >= BUFMAX)			continue;		buffer[count] = 0;		if (ch == '#') {			xmitcsum = hex(getDebugChar() & 0x7f) << 4;			xmitcsum |= hex(getDebugChar() & 0x7f);			if (checksum != xmitcsum)				putDebugChar('-');	/* failed checksum */			else {				putDebugChar('+'); /* successful transfer */				/*				 * if a sequence char is present,				 * reply the sequence ID				 */				if (buffer[2] == ':') {					putDebugChar(buffer[0]);					putDebugChar(buffer[1]);					/*					 * remove sequence chars from buffer					 */					count = strlen(buffer);					for (i=3; i <= count; i++)						buffer[i-3] = buffer[i];				}			}		}	}	while (checksum != xmitcsum);}/* * send the packet in buffer. */static void putpacket(char *buffer){	unsigned char checksum;	int count;	unsigned char ch;	/*	 * $<packet info>#<checksum>.	 */	do {		putDebugChar('$');		checksum = 0;		count = 0;		while ((ch = buffer[count]) != 0) {			if (!(putDebugChar(ch)))				return;			checksum += ch;			count += 1;		}		putDebugChar('#');		putDebugChar(hexchars[checksum >> 4]);		putDebugChar(hexchars[checksum & 0xf]);	}	while ((getDebugChar() & 0x7f) != '+');}/* * Convert the memory pointed to by mem into hex, placing result in buf. * Return a pointer to the last char put in buf (null), in case of mem fault, * return 0. * may_fault is non-zero if we are reading from arbitrary memory, but is currently * not used. */static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault){	unsigned char ch;	while (count-- > 0) {		if (kgdb_read_byte(mem++, &ch) != 0)			return 0;		*buf++ = hexchars[ch >> 4];		*buf++ = hexchars[ch & 0xf];	}	*buf = 0;	return buf;}/* * convert the hex array pointed to by buf into binary to be placed in mem * return a pointer to the character AFTER the last byte written * may_fault is non-zero if we are reading from arbitrary memory, but is currently * not used. */static char *hex2mem(char *buf, char *mem, int count, int may_fault){	int i;	unsigned char ch;	for (i=0; i<count; i++)	{		ch = hex(*buf++) << 4;		ch |= hex(*buf++);		if (kgdb_write_byte(ch, mem++) != 0)			return 0;	}	return mem;}/* * This table contains the mapping between SPARC hardware trap types, and * signals, which are primarily what GDB understands.  It also indicates * which hardware traps we need to commandeer when initializing the stub. */static struct hard_trap_info {	unsigned char tt;		/* Trap type code for MIPS R3xxx and R4xxx */	unsigned char signo;		/* Signal that we map this trap into */} hard_trap_info[] = {	{ 6, SIGBUS },			/* instruction bus error */	{ 7, SIGBUS },			/* data bus error */	{ 9, SIGTRAP },			/* break */	{ 10, SIGILL },			/* reserved instruction *//*	{ 11, SIGILL },		*/	/* CPU unusable */	{ 12, SIGFPE },			/* overflow */	{ 13, SIGTRAP },		/* trap */	{ 14, SIGSEGV },		/* virtual instruction cache coherency */	{ 15, SIGFPE },			/* floating point exception */	{ 23, SIGSEGV },		/* watch */	{ 31, SIGSEGV },		/* virtual data cache coherency */	{ 0, 0}				/* Must be last */};/* Save the normal trap handlers for user-mode traps. */void *saved_vectors[32];/* * Set up exception handlers for tracing and breakpoints */void set_debug_traps(void){	struct hard_trap_info *ht;	unsigned long flags;	unsigned char c;	save_and_cli(flags);	for (ht = hard_trap_info; ht->tt && ht->signo; ht++)		saved_vectors[ht->tt] = set_except_vector(ht->tt, trap_low);  	putDebugChar('+'); /* 'hello world' */	/*	 * In case GDB is started before us, ack any packets	 * (presumably "$?#xx") sitting there.	 */	while((c = getDebugChar()) != '$');	while((c = getDebugChar()) != '#');	c = getDebugChar(); /* eat first csum byte */	c = getDebugChar(); /* eat second csum byte */	putDebugChar('+'); /* ack it */	initialized = 1;	restore_flags(flags);}/* * Convert the MIPS hardware trap type code to a Unix signal number. */static int computeSignal(int tt){	struct hard_trap_info *ht;	for (ht = hard_trap_info; ht->tt && ht->signo; ht++)		if (ht->tt == tt)			return ht->signo;	return SIGHUP;		/* default for things we don't know about */}/* * While we find nice hex chars, build an int. * Return number of chars processed. */static int hexToInt(char **ptr, int *intValue){	int numChars = 0;	int hexValue;	*intValue = 0;	while (**ptr) {		hexValue = hex(**ptr);		if (hexValue < 0)			break;		*intValue = (*intValue << 4) | hexValue;		numChars ++;		(*ptr)++;	}	return (numChars);}#if 0/* * Print registers (on target console) * Used only to debug the stub... */void show_gdbregs(struct gdb_regs * regs){	/*	 * Saved main processor registers	 */	printk("$0 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",	       regs->reg0, regs->reg1, regs->reg2, regs->reg3,               regs->reg4, regs->reg5, regs->reg6, regs->reg7);	printk("$8 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",	       regs->reg8, regs->reg9, regs->reg10, regs->reg11,               regs->reg12, regs->reg13, regs->reg14, regs->reg15);	printk("$16: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",	       regs->reg16, regs->reg17, regs->reg18, regs->reg19,               regs->reg20, regs->reg21, regs->reg22, regs->reg23);	printk("$24: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",	       regs->reg24, regs->reg25, regs->reg26, regs->reg27,	       regs->reg28, regs->reg29, regs->reg30, regs->reg31);	/*	 * Saved cp0 registers	 */	printk("epc  : %08lx\nStatus: %08lx\nCause : %08lx\n",	       regs->cp0_epc, regs->cp0_status, regs->cp0_cause);}#endif /* dead code *//* * We single-step by setting breakpoints. When an exception * is handled, we need to restore the instructions hoisted * when the breakpoints were set. * * This is where we save the original instructions. */static struct gdb_bp_save {	unsigned int addr;        unsigned int val;} step_bp[2];#define BP 0x0000000d  /* break opcode *//* * Set breakpoint instructions for single stepping. */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -