📄 gdb-stub.c
字号:
/* * arch/mips/kernel/gdb-stub.c * * Originally written by Glenn Engel, Lake Stevens Instrument Division * * Contributed by HP Systems * * Modified for SPARC by Stu Grossman, Cygnus Support. * * Modified for Linux/MIPS (and MIPS in general) by Andreas Busse * Send complaints, suggestions etc. to <andy@waldorf-gmbh.de> * * Copyright (C) 1995 Andreas Busse * * $Id: gdb-stub.c,v 1.1.1.1 2004/02/04 12:55:40 laputa Exp $ *//* * To enable debugger support, two things need to happen. One, a * call to set_debug_traps() is necessary in order to allow any breakpoints * or error conditions to be properly intercepted and reported to gdb. * Two, a breakpoint needs to be generated to begin communication. This * is most easily accomplished by a call to breakpoint(). Breakpoint() * simulates a breakpoint by executing a BREAK instruction. * * * The following gdb commands are supported: * * command function Return value * * g return the value of the CPU registers hex data or ENN * G set the value of the CPU registers OK or ENN * * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN * * c Resume at current address SNN ( signal NN) * cAA..AA Continue at address AA..AA SNN * * s Step one instruction SNN * sAA..AA Step one instruction from AA..AA SNN * * k kill * * ? What was the last sigval ? SNN (signal NN) * * bBB..BB Set baud rate to BB..BB OK or BNN, then sets * baud rate * * All commands and responses are sent with a packet which includes a * checksum. A packet consists of * * $<packet info>#<checksum>. * * where * <packet info> :: <characters representing the command or response> * <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>> * * When a packet is received, it is first acknowledged with either '+' or '-'. * '+' indicates a successful transfer. '-' indicates a failed transfer. * * Example: * * Host: Reply: * $m0,10#2a +$00010203040506070809101112131415#42 * * * ============== * MORE EXAMPLES: * ============== * * For reference -- the following are the steps that one * company took (RidgeRun Inc) to get remote gdb debugging * going. In this scenario the host machine was a PC and the * target platform was a Galileo EVB64120A MIPS evaluation * board. * * Step 1: * First download gdb-5.0.tar.gz from the internet. * and then build/install the package. * * Example: * $ tar zxf gdb-5.0.tar.gz * $ cd gdb-5.0 * $ ./configure --target=mips-linux-elf * $ make * $ install * $ which mips-linux-elf-gdb * /usr/local/bin/mips-linux-elf-gdb * * Step 2: * Configure linux for remote debugging and build it. * * Example: * $ cd ~/linux * $ make menuconfig <go to "Kernel Hacking" and turn on remote debugging> * $ make dep; make vmlinux * * Step 3: * Download the kernel to the remote target and start * the kernel running. It will promptly halt and wait * for the host gdb session to connect. It does this * since the "Kernel Hacking" option has defined * CONFIG_REMOTE_DEBUG which in turn enables your calls * to: * set_debug_traps(); * breakpoint(); * * Step 4: * Start the gdb session on the host. * * Example: * $ mips-linux-elf-gdb vmlinux * (gdb) set remotebaud 115200 * (gdb) target remote /dev/ttyS1 * ...at this point you are connected to * the remote target and can use gdb * in the normal fasion. Setting * breakpoints, single stepping, * printing variables, etc. * */#include <linux/string.h>#include <linux/kernel.h>#include <linux/signal.h>#include <linux/sched.h>#include <linux/mm.h>#include <linux/console.h>#include <linux/init.h>#include <asm/asm.h>#include <asm/mipsregs.h>#include <asm/pgtable.h>#include <asm/system.h>#include <asm/gdb-stub.h>#include <asm/inst.h>/* * external low-level support routines */extern int putDebugChar(char c); /* write a single character */extern char getDebugChar(void); /* read and return a single char */extern void trap_low(void);/* * breakpoint and test functions */extern void breakpoint(void);extern void breakinst(void);extern void adel(void);/* * local prototypes */static void getpacket(char *buffer);static void putpacket(char *buffer);static int computeSignal(int tt);static int hex(unsigned char ch);static int hexToInt(char **ptr, int *intValue);static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault);void handle_exception(struct gdb_regs *regs);/* * BUFMAX defines the maximum number of characters in inbound/outbound buffers * at least NUMREGBYTES*2 are needed for register packets */#define BUFMAX 2048static char input_buffer[BUFMAX];static char output_buffer[BUFMAX];static int initialized; /* !0 means we've been initialized */static const char hexchars[]="0123456789abcdef";/* Used to prevent crashes in memory access. Note that they'll crash anyway if we haven't set up fault handlers yet... */int kgdb_read_byte(unsigned *address, unsigned *dest);int kgdb_write_byte(unsigned val, unsigned *dest);/* * Convert ch from a hex digit to an int */static int hex(unsigned char ch){ if (ch >= 'a' && ch <= 'f') return ch-'a'+10; if (ch >= '0' && ch <= '9') return ch-'0'; if (ch >= 'A' && ch <= 'F') return ch-'A'+10; return -1;}/* * scan for the sequence $<data>#<checksum> */static void getpacket(char *buffer){ unsigned char checksum; unsigned char xmitcsum; int i; int count; unsigned char ch; do { /* * wait around for the start character, * ignore all other characters */ while ((ch = (getDebugChar() & 0x7f)) != '$') ; checksum = 0; xmitcsum = -1; count = 0; /* * now, read until a # or end of buffer is found */ while (count < BUFMAX) { ch = getDebugChar() & 0x7f; if (ch == '#') break; checksum = checksum + ch; buffer[count] = ch; count = count + 1; } if (count >= BUFMAX) continue; buffer[count] = 0; if (ch == '#') { xmitcsum = hex(getDebugChar() & 0x7f) << 4; xmitcsum |= hex(getDebugChar() & 0x7f); if (checksum != xmitcsum) putDebugChar('-'); /* failed checksum */ else { putDebugChar('+'); /* successful transfer */ /* * if a sequence char is present, * reply the sequence ID */ if (buffer[2] == ':') { putDebugChar(buffer[0]); putDebugChar(buffer[1]); /* * remove sequence chars from buffer */ count = strlen(buffer); for (i=3; i <= count; i++) buffer[i-3] = buffer[i]; } } } } while (checksum != xmitcsum);}/* * send the packet in buffer. */static void putpacket(char *buffer){ unsigned char checksum; int count; unsigned char ch; /* * $<packet info>#<checksum>. */ do { putDebugChar('$'); checksum = 0; count = 0; while ((ch = buffer[count]) != 0) { if (!(putDebugChar(ch))) return; checksum += ch; count += 1; } putDebugChar('#'); putDebugChar(hexchars[checksum >> 4]); putDebugChar(hexchars[checksum & 0xf]); } while ((getDebugChar() & 0x7f) != '+');}/* * Convert the memory pointed to by mem into hex, placing result in buf. * Return a pointer to the last char put in buf (null), in case of mem fault, * return 0. * may_fault is non-zero if we are reading from arbitrary memory, but is currently * not used. */static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault){ unsigned char ch; while (count-- > 0) { if (kgdb_read_byte(mem++, &ch) != 0) return 0; *buf++ = hexchars[ch >> 4]; *buf++ = hexchars[ch & 0xf]; } *buf = 0; return buf;}/* * convert the hex array pointed to by buf into binary to be placed in mem * return a pointer to the character AFTER the last byte written * may_fault is non-zero if we are reading from arbitrary memory, but is currently * not used. */static char *hex2mem(char *buf, char *mem, int count, int may_fault){ int i; unsigned char ch; for (i=0; i<count; i++) { ch = hex(*buf++) << 4; ch |= hex(*buf++); if (kgdb_write_byte(ch, mem++) != 0) return 0; } return mem;}/* * This table contains the mapping between SPARC hardware trap types, and * signals, which are primarily what GDB understands. It also indicates * which hardware traps we need to commandeer when initializing the stub. */static struct hard_trap_info { unsigned char tt; /* Trap type code for MIPS R3xxx and R4xxx */ unsigned char signo; /* Signal that we map this trap into */} hard_trap_info[] = { { 6, SIGBUS }, /* instruction bus error */ { 7, SIGBUS }, /* data bus error */ { 9, SIGTRAP }, /* break */ { 10, SIGILL }, /* reserved instruction *//* { 11, SIGILL }, */ /* CPU unusable */ { 12, SIGFPE }, /* overflow */ { 13, SIGTRAP }, /* trap */ { 14, SIGSEGV }, /* virtual instruction cache coherency */ { 15, SIGFPE }, /* floating point exception */ { 23, SIGSEGV }, /* watch */ { 31, SIGSEGV }, /* virtual data cache coherency */ { 0, 0} /* Must be last */};/* Save the normal trap handlers for user-mode traps. */void *saved_vectors[32];/* * Set up exception handlers for tracing and breakpoints */void set_debug_traps(void){ struct hard_trap_info *ht; unsigned long flags; unsigned char c; save_and_cli(flags); for (ht = hard_trap_info; ht->tt && ht->signo; ht++) saved_vectors[ht->tt] = set_except_vector(ht->tt, trap_low); putDebugChar('+'); /* 'hello world' */ /* * In case GDB is started before us, ack any packets * (presumably "$?#xx") sitting there. */ while((c = getDebugChar()) != '$'); while((c = getDebugChar()) != '#'); c = getDebugChar(); /* eat first csum byte */ c = getDebugChar(); /* eat second csum byte */ putDebugChar('+'); /* ack it */ initialized = 1; restore_flags(flags);}/* * Convert the MIPS hardware trap type code to a Unix signal number. */static int computeSignal(int tt){ struct hard_trap_info *ht; for (ht = hard_trap_info; ht->tt && ht->signo; ht++) if (ht->tt == tt) return ht->signo; return SIGHUP; /* default for things we don't know about */}/* * While we find nice hex chars, build an int. * Return number of chars processed. */static int hexToInt(char **ptr, int *intValue){ int numChars = 0; int hexValue; *intValue = 0; while (**ptr) { hexValue = hex(**ptr); if (hexValue < 0) break; *intValue = (*intValue << 4) | hexValue; numChars ++; (*ptr)++; } return (numChars);}#if 0/* * Print registers (on target console) * Used only to debug the stub... */void show_gdbregs(struct gdb_regs * regs){ /* * Saved main processor registers */ printk("$0 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", regs->reg0, regs->reg1, regs->reg2, regs->reg3, regs->reg4, regs->reg5, regs->reg6, regs->reg7); printk("$8 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", regs->reg8, regs->reg9, regs->reg10, regs->reg11, regs->reg12, regs->reg13, regs->reg14, regs->reg15); printk("$16: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", regs->reg16, regs->reg17, regs->reg18, regs->reg19, regs->reg20, regs->reg21, regs->reg22, regs->reg23); printk("$24: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", regs->reg24, regs->reg25, regs->reg26, regs->reg27, regs->reg28, regs->reg29, regs->reg30, regs->reg31); /* * Saved cp0 registers */ printk("epc : %08lx\nStatus: %08lx\nCause : %08lx\n", regs->cp0_epc, regs->cp0_status, regs->cp0_cause);}#endif /* dead code *//* * We single-step by setting breakpoints. When an exception * is handled, we need to restore the instructions hoisted * when the breakpoints were set. * * This is where we save the original instructions. */static struct gdb_bp_save { unsigned int addr; unsigned int val;} step_bp[2];#define BP 0x0000000d /* break opcode *//* * Set breakpoint instructions for single stepping. */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -