⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bayesianlogisticregression.java

📁 bayes算法在java环境下的开发和实现过程
💻 JAVA
📖 第 1 页 / 共 3 页
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    BayesianLogisticRegression.java *    Copyright (C) 2008 Illinois Institute of Technology * */package weka.classifiers.bayes;import weka.classifiers.Classifier;import weka.classifiers.bayes.blr.GaussianPriorImpl;import weka.classifiers.bayes.blr.LaplacePriorImpl;import weka.classifiers.bayes.blr.Prior;import weka.core.Attribute;import weka.core.Capabilities;import weka.core.Instance;import weka.core.Instances;import weka.core.Option;import weka.core.OptionHandler;import weka.core.RevisionUtils;import weka.core.SelectedTag;import weka.core.SerializedObject;import weka.core.Tag;import weka.core.TechnicalInformation;import weka.core.TechnicalInformationHandler;import weka.core.Utils;import weka.core.Capabilities.Capability;import weka.core.TechnicalInformation.Field;import weka.core.TechnicalInformation.Type;import weka.filters.Filter;import weka.filters.unsupervised.attribute.Normalize;import java.util.Enumeration;import java.util.Random;import java.util.StringTokenizer;import java.util.Vector;/** <!-- globalinfo-start --> * Implements Bayesian Logistic Regression for both Gaussian and Laplace Priors.<br/> * <br/> * For more information, see<br/> * <br/> * Alexander Genkin, David D. Lewis, David Madigan (2004). Large-scale bayesian logistic regression for text categorization. URL http://www.stat.rutgers.edu/~madigan/PAPERS/shortFat-v3a.pdf. * <p/> <!-- globalinfo-end --> *  <!-- technical-bibtex-start --> * BibTeX: * <pre> * &#64;techreport{Genkin2004, *    author = {Alexander Genkin and David D. Lewis and David Madigan}, *    institution = {DIMACS}, *    title = {Large-scale bayesian logistic regression for text categorization}, *    year = {2004}, *    URL = {http://www.stat.rutgers.edu/\~madigan/PAPERS/shortFat-v3a.pdf} * } * </pre> * <p/> <!-- technical-bibtex-end --> * * *  @author Navendu Garg (gargnav at iit dot edu) *  @version $Revision: 1.3 $ */public class BayesianLogisticRegression extends Classifier  implements OptionHandler, TechnicalInformationHandler {    static final long serialVersionUID = -8013478897911757631L;  /** Log-likelihood values to be used to choose the best hyperparameter. */  public static double[] LogLikelihood;  /** Set of values to be used as hyperparameter values during Cross-Validation. */  public static double[] InputHyperparameterValues;  /** DEBUG Mode*/  boolean debug = false;  /** Choose whether to normalize data or not */  public boolean NormalizeData = false;  /** Tolerance criteria for the stopping criterion. */  public double Tolerance = 0.0005;  /** Threshold for binary classification of probabilisitic estimate*/  public double Threshold = 0.5;  /** Distributions available */  public static final int GAUSSIAN = 1;  public static final int LAPLACIAN = 2;    public static final Tag[] TAGS_PRIOR = {    new Tag(GAUSSIAN, "Gaussian"),    new Tag(LAPLACIAN, "Laplacian")  };  /** Distribution Prior class */  public int PriorClass = GAUSSIAN;  /** NumFolds for CV based Hyperparameters selection*/  public int NumFolds = 2;  /** Methods for selecting the hyperparameter value */  public static final int NORM_BASED = 1;  public static final int CV_BASED = 2;  public static final int SPECIFIC_VALUE = 3;  public static final Tag[] TAGS_HYPER_METHOD = {    new Tag(NORM_BASED, "Norm-based"),    new Tag(CV_BASED, "CV-based"),    new Tag(SPECIFIC_VALUE, "Specific value")  };  /** Hyperparameter selection method */  public int HyperparameterSelection = NORM_BASED;  /** The class index from the training data */  public int ClassIndex = -1;  /** Best hyperparameter for test phase */  public double HyperparameterValue = 0.27;  /** CV Hyperparameter Range */  public String HyperparameterRange = "R:0.01-316,3.16";  /** Maximum number of iterations */  public int maxIterations = 100;  /**Iteration counter */  public int iterationCounter = 0;  /** Array for storing coefficients of Bayesian regression model. */  public double[] BetaVector;  /** Array to store Regression Coefficient updates. */  public double[] DeltaBeta;  /**        Trust Region Radius Update*/  public double[] DeltaUpdate;  /** Trust Region Radius*/  public double[] Delta;  /**  Array to store Hyperparameter values for each feature. */  public double[] Hyperparameters;  /** R(i)= BetaVector X x(i) X y(i).   * This an intermediate value with respect to vector BETA, input values and corresponding class labels*/  public double[] R;  /** This vector is used to store the increments on the R(i). It is also used to determining the stopping criterion.*/  public double[] DeltaR;  /**   * This variable is used to keep track of change in   * the value of delta summation of r(i).   */  public double Change;  /**   * Bayesian Logistic Regression returns the probability of a given instance will belong to a certain   * class (p(y=+1|Beta,X). To obtain a binary value the Threshold value is used.   * <pre>   * p(y=+1|Beta,X)>Threshold ? 1 : -1   * </pre>   */  /** Filter interface used to point to weka.filters.unsupervised.attribute.Normalize object   *   */  public Filter m_Filter;  /** Dataset provided to do Training/Test set.*/  protected Instances m_Instances;  /**        Prior class object interface*/  protected Prior m_PriorUpdate;  public String globalInfo() {    return "Implements Bayesian Logistic Regression "      + "for both Gaussian and Laplace Priors.\n\n"      + "For more information, see\n\n"      + getTechnicalInformation();  }  /**   * <pre>   * (1)Initialize m_Beta[j] to 0.   * (2)Initialize m_DeltaUpdate[j].   * </pre>   *   * */  public void initialize() throws Exception {    int numOfAttributes;    int numOfInstances;    int i;    int j;    Change = 0.0;    //Manipulate Data    if (NormalizeData) {      m_Filter = new Normalize();      m_Filter.setInputFormat(m_Instances);      m_Instances = Filter.useFilter(m_Instances, m_Filter);    }    //Set the intecept coefficient.    Attribute att = new Attribute("(intercept)");    Instance instance;    m_Instances.insertAttributeAt(att, 0);    for (i = 0; i < m_Instances.numInstances(); i++) {      instance = m_Instances.instance(i);      instance.setValue(0, 1.0);    }    //Get the number of attributes    numOfAttributes = m_Instances.numAttributes();    numOfInstances = m_Instances.numInstances();    ClassIndex = m_Instances.classIndex();    iterationCounter = 0;    //Initialize Arrays.    switch (HyperparameterSelection) {    case 1:      HyperparameterValue = normBasedHyperParameter();      if (debug) {        System.out.println("Norm-based Hyperparameter: " + HyperparameterValue);      }      break;    case 2:      HyperparameterValue = CVBasedHyperparameter();      if (debug) {        System.out.println("CV-based Hyperparameter: " + HyperparameterValue);      }      break;    }    BetaVector = new double[numOfAttributes];    Delta = new double[numOfAttributes];    DeltaBeta = new double[numOfAttributes];    Hyperparameters = new double[numOfAttributes];    DeltaUpdate = new double[numOfAttributes];    for (j = 0; j < numOfAttributes; j++) {      BetaVector[j] = 0.0;      Delta[j] = 1.0;      DeltaBeta[j] = 0.0;      DeltaUpdate[j] = 0.0;      //TODO: Change the way it takes values.      Hyperparameters[j] = HyperparameterValue;    }    DeltaR = new double[numOfInstances];    R = new double[numOfInstances];    for (i = 0; i < numOfInstances; i++) {      DeltaR[i] = 0.0;      R[i] = 0.0;    }    //Set the Prior interface to the appropriate prior implementation.    if (PriorClass == GAUSSIAN) {      m_PriorUpdate = new GaussianPriorImpl();    } else {      m_PriorUpdate = new LaplacePriorImpl();    }  }  /**   * This method tests what kind of data this classifier can handle.   * return Capabilities   */  public Capabilities getCapabilities() {    Capabilities result = super.getCapabilities();    // attributes    result.enable(Capability.NUMERIC_ATTRIBUTES);    result.enable(Capability.BINARY_ATTRIBUTES);    // class    result.enable(Capability.BINARY_CLASS);    // instances    result.setMinimumNumberInstances(0);    return result;  }  /**   * <ul>   *         <li>(1) Set the data to the class attribute m_Instances.</li>   *  <li>(2)Call the method initialize() to initialize the values.</li>   * </ul>   *        @param data training data   *        @exception Exception if classifier can't be built successfully.   */  public void buildClassifier(Instances data) throws Exception {    Instance instance;    int i;    int j;    // can classifier handle the data?    getCapabilities().testWithFail(data);    //(1) Set the data to the class attribute m_Instances.    m_Instances = new Instances(data);    //(2)Call the method initialize() to initialize the values.    initialize();    do {      //Compute the prior Trust Region Radius Update;      for (j = 0; j < m_Instances.numAttributes(); j++) {        if (j != ClassIndex) {          DeltaUpdate[j] = m_PriorUpdate.update(j, m_Instances, BetaVector[j],              Hyperparameters[j], R, Delta[j]);          //limit step to trust region.          DeltaBeta[j] = Math.min(Math.max(DeltaUpdate[j], 0 - Delta[j]),              Delta[j]);          //Update the           for (i = 0; i < m_Instances.numInstances(); i++) {            instance = m_Instances.instance(i);            if (instance.value(j) != 0) {              DeltaR[i] = DeltaBeta[j] * instance.value(j) * classSgn(instance.classValue());              R[i] += DeltaR[i];            }          }          //Updated Beta values.          BetaVector[j] += DeltaBeta[j];          //Update size of trust region.          Delta[j] = Math.max(2 * Math.abs(DeltaBeta[j]), Delta[j] / 2.0);        }      }    } while (!stoppingCriterion());    m_PriorUpdate.computelogLikelihood(BetaVector, m_Instances);    m_PriorUpdate.computePenalty(BetaVector, Hyperparameters);  }  /**   * This class is used to mask the internal class labels.   *   * @param value internal class label   * @return   * <pre>   * <ul><li>   *  -1 for internal class label 0   *  </li>   *  <li>   *  +1 for internal class label 1   *  </li>   *  </ul>   *  </pre>   */  public static double classSgn(double value) {    if (value == 0.0) {      return -1.0;    } else {      return 1.0;    }  }  /**    * Returns an instance of a TechnicalInformation object, containing    * detailed information about the technical background of this class,    * e.g., paper reference or book this class is based on.    *    * @return the technical information about this class    */  public TechnicalInformation getTechnicalInformation() {    TechnicalInformation result = null;    result = new TechnicalInformation(Type.TECHREPORT);    result.setValue(Field.AUTHOR, "Alexander Genkin and David D. Lewis and David Madigan");    result.setValue(Field.YEAR, "2004");    result.setValue(Field.TITLE, "Large-scale bayesian logistic regression for text categorization");    result.setValue(Field.INSTITUTION, "DIMACS");    result.setValue(Field.URL, "http://www.stat.rutgers.edu/~madigan/PAPERS/shortFat-v3a.pdf");    return result;  }  /**   * This is a convient function that defines and upper bound   * (Delta>0) for values of r(i) reachable by updates in the   * trust region.   *   * r BetaVector X x(i)y(i).   * delta A parameter where sigma > 0   * @return double function value   */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -