📄 dsp281x_init.c
字号:
SCIRXINTA_ISR, // SCI-A
SCITXINTA_ISR, // SCI-A
SCIRXINTB_ISR, // SCI-B
SCITXINTB_ISR, // SCI-B
ECAN0INTA_ISR, // eCAN
ECAN1INTA_ISR, // eCAN
rsvd_ISR,
rsvd_ISR,
// Group 10 PIE Vectors
rsvd_ISR,
rsvd_ISR,
rsvd_ISR,
rsvd_ISR,
rsvd_ISR,
rsvd_ISR,
rsvd_ISR,
rsvd_ISR,
// Group 11 PIE Vectors
rsvd_ISR,
rsvd_ISR,
rsvd_ISR,
rsvd_ISR,
rsvd_ISR,
rsvd_ISR,
rsvd_ISR,
rsvd_ISR,
// Group 12 PIE Vectors
rsvd_ISR,
rsvd_ISR,
rsvd_ISR,
rsvd_ISR,
rsvd_ISR,
rsvd_ISR,
rsvd_ISR,
rsvd_ISR,
};
//---------------------------------------------------------------------------
// InitPieVectTable:
//---------------------------------------------------------------------------
// This function initializes the PIE vector table to a known state.
// This function must be executed after boot time.
//
void InitPieVectTable(void)
{
int16 i;
Uint32 *Source = (void *) &PieVectTableInit;
Uint32 *Dest = (void *) &PieVectTable;
EALLOW;
for(i=0; i < 128; i++)
*Dest++ = *Source++;
EDIS;
// Enable the PIE Vector Table
PieCtrlRegs.PIECRTL.bit.ENPIE = 1;
}
struct CPUTIMER_VARS CpuTimer0;
// CpuTimer 1 and CpuTimer2 are reserved for DSP BIOS & other RTOS
//struct CPUTIMER_VARS CpuTimer1;
//struct CPUTIMER_VARS CpuTimer2;
//---------------------------------------------------------------------------
// InitCpuTimers:
//---------------------------------------------------------------------------
// This function initializes all three CPU timers to a known state.
//
void InitCpuTimers(void)
{
// CPU Timer 0
// Initialize address pointers to respective timer registers:
CpuTimer0.RegsAddr = &CpuTimer0Regs;
// Initialize timer period to maximum:
CpuTimer0Regs.PRD.all = 0xFFFFFFFF;
// Initialize pre-scale counter to divide by 1 (SYSCLKOUT):
CpuTimer0Regs.TPR.all = 0;
CpuTimer0Regs.TPRH.all = 0;
// Make sure timer is stopped:
CpuTimer0Regs.TCR.bit.TSS = 1;
// Reload all counter register with period value:
CpuTimer0Regs.TCR.bit.TRB = 1;
// Reset interrupt counters:
CpuTimer0.InterruptCount = 0;
// CpuTimer 1 and CpuTimer2 are reserved for DSP BIOS & other RTOS
// Do not use these two timers if you ever plan on integrating
// DSP-BIOS or another realtime OS.
//
// For this reason, the code to manipulate these two timers is
// commented out and not used in these examples.
// Initialize address pointers to respective timer registers:
// CpuTimer1.RegsAddr = &CpuTimer1Regs;
// CpuTimer2.RegsAddr = &CpuTimer2Regs;
// Initialize timer period to maximum:
// CpuTimer1Regs.PRD.all = 0xFFFFFFFF;
// CpuTimer2Regs.PRD.all = 0xFFFFFFFF;
// Make sure timers are stopped:
// CpuTimer1Regs.TCR.bit.TSS = 1;
// CpuTimer2Regs.TCR.bit.TSS = 1;
// Reload all counter register with period value:
// CpuTimer1Regs.TCR.bit.TRB = 1;
// CpuTimer2Regs.TCR.bit.TRB = 1;
// Reset interrupt counters:
// CpuTimer1.InterruptCount = 0;
// CpuTimer2.InterruptCount = 0;
}
///---------------------------------------------------------------------------
// ConfigCpuTimer:
//---------------------------------------------------------------------------
// This function initializes the selected timer to the period specified
// by the "Freq" and "Period" parameters. The "Freq" is entered as "MHz"
// and the period in "uSeconds". The timer is held in the stopped state
// after configuration.
//
void ConfigCpuTimer(struct CPUTIMER_VARS *Timer, float Freq, float Period)
{
Uint32 temp;
// Initialize timer period:
Timer->CPUFreqInMHz = Freq;
Timer->PeriodInUSec = Period;
temp = (long) (Freq * Period);
Timer->RegsAddr->PRD.all = temp;
// Set pre-scale counter to divide by 1 (SYSCLKOUT):
Timer->RegsAddr->TPR.all = 0;
Timer->RegsAddr->TPRH.all = 0;
// Initialize timer control register:
Timer->RegsAddr->TCR.bit.TSS = 1; // 1 = Stop timer, 0 = Start/Restart Timer
Timer->RegsAddr->TCR.bit.TRB = 1; // 1 = reload timer
Timer->RegsAddr->TCR.bit.SOFT = 1;
Timer->RegsAddr->TCR.bit.FREE = 1; // Timer Free Run
Timer->RegsAddr->TCR.bit.TIE = 1; // 0 = Disable/ 1 = Enable Timer Interrupt
// Reset interrupt counter:
Timer->InterruptCount = 0;
}
//---------------------------------------------------------------------------
// InitXINTF:
//---------------------------------------------------------------------------
// This function initializes the External Interface the default reset state.
//
// Do not modify the timings of the XINTF while running from the XINTF. Doing
// so can yield unpredictable results
void InitXintf(void)
{
#if F2812
// This shows how to write to the XINTF registers. The
// values used here are the default state after reset.
// Different hardware will require a different configuration.
// For an example of an XINTF configuration used with the
// F2812 eZdsp, refer to the examples/run_from_xintf project.
// Any changes to XINTF timing should only be made by code
// running outside of the XINTF.
// All Zones---------------------------------
// Timing for all zones based on XTIMCLK = 1/2 SYSCLKOUT
XintfRegs.XINTCNF2.bit.XTIMCLK = 0;
// No write buffering
XintfRegs.XINTCNF2.bit.WRBUFF = 3;
// XCLKOUT is enabled
XintfRegs.XINTCNF2.bit.CLKOFF = 0;
// XCLKOUT = XTIMCLK/2
XintfRegs.XINTCNF2.bit.CLKMODE = 1;
// Zone 0------------------------------------
// When using ready, ACTIVE must be 1 or greater
// Lead must always be 1 or greater
// Zone write timing
XintfRegs.XTIMING0.bit.XWRLEAD = 3;
XintfRegs.XTIMING0.bit.XWRACTIVE = 7;
XintfRegs.XTIMING0.bit.XWRTRAIL = 3;
// Zone read timing
XintfRegs.XTIMING0.bit.XRDLEAD = 3;
XintfRegs.XTIMING0.bit.XRDACTIVE = 7;
XintfRegs.XTIMING0.bit.XRDTRAIL = 3;
// double all Zone read/write lead/active/trail timing
XintfRegs.XTIMING0.bit.X2TIMING = 1;
// Zone will sample XREADY signal
XintfRegs.XTIMING0.bit.USEREADY = 1;
XintfRegs.XTIMING0.bit.READYMODE = 1; // sample asynchronous
// Size must be 1,1 - other values are reserved
XintfRegs.XTIMING0.bit.XSIZE = 3;
// Zone 1------------------------------------
// When using ready, ACTIVE must be 1 or greater
// Lead must always be 1 or greater
// Zone write timing
XintfRegs.XTIMING1.bit.XWRLEAD = 3;
XintfRegs.XTIMING1.bit.XWRACTIVE = 7;
XintfRegs.XTIMING1.bit.XWRTRAIL = 3;
// Zone read timing
XintfRegs.XTIMING1.bit.XRDLEAD = 3;
XintfRegs.XTIMING1.bit.XRDACTIVE = 7;
XintfRegs.XTIMING1.bit.XRDTRAIL = 3;
// double all Zone read/write lead/active/trail timing
XintfRegs.XTIMING1.bit.X2TIMING = 1;
// Zone will sample XREADY signal
XintfRegs.XTIMING1.bit.USEREADY = 1;
XintfRegs.XTIMING1.bit.READYMODE = 1; // sample asynchronous
// Size must be 1,1 - other values are reserved
XintfRegs.XTIMING1.bit.XSIZE = 3;
// Zone 2------------------------------------
// When using ready, ACTIVE must be 1 or greater
// Lead must always be 1 or greater
// Zone write timing
XintfRegs.XTIMING2.bit.XWRLEAD = 3;
XintfRegs.XTIMING2.bit.XWRACTIVE = 7;
XintfRegs.XTIMING2.bit.XWRTRAIL = 3;
// Zone read timing
XintfRegs.XTIMING2.bit.XRDLEAD = 3;
XintfRegs.XTIMING2.bit.XRDACTIVE = 7;
XintfRegs.XTIMING2.bit.XRDTRAIL = 3;
// double all Zone read/write lead/active/trail timing
XintfRegs.XTIMING2.bit.X2TIMING = 1;
// Zone will sample XREADY signal
XintfRegs.XTIMING2.bit.USEREADY = 1;
XintfRegs.XTIMING2.bit.READYMODE = 1; // sample asynchronous
// Size must be 1,1 - other values are reserved
XintfRegs.XTIMING2.bit.XSIZE = 3;
// Zone 6------------------------------------
// When using ready, ACTIVE must be 1 or greater
// Lead must always be 1 or greater
// Zone write timing
XintfRegs.XTIMING6.bit.XWRLEAD = 1;
XintfRegs.XTIMING6.bit.XWRACTIVE = 1;
XintfRegs.XTIMING6.bit.XWRTRAIL = 1;
// Zone read timing
XintfRegs.XTIMING6.bit.XRDLEAD = 1;
XintfRegs.XTIMING6.bit.XRDACTIVE = 2;
XintfRegs.XTIMING6.bit.XRDTRAIL = 0;
// double all Zone read/write lead/active/trail timing
XintfRegs.XTIMING6.bit.X2TIMING = 0;
// Zone will sample XREADY signal
XintfRegs.XTIMING6.bit.USEREADY = 0;
XintfRegs.XTIMING6.bit.READYMODE = 0; // sample asynchronous
// Size must be 1,1 - other values are reserved
XintfRegs.XTIMING6.bit.XSIZE = 3;
// Zone 7------------------------------------
// When using ready, ACTIVE must be 1 or greater
// Lead must always be 1 or greater
// Zone write timing
XintfRegs.XTIMING7.bit.XWRLEAD = 1;
XintfRegs.XTIMING7.bit.XWRACTIVE = 1;
XintfRegs.XTIMING7.bit.XWRTRAIL = 1;
// Zone read timing
XintfRegs.XTIMING7.bit.XRDLEAD = 1;
XintfRegs.XTIMING7.bit.XRDACTIVE = 2;
XintfRegs.XTIMING7.bit.XRDTRAIL = 0;
// double all Zone read/write lead/active/trail timing
XintfRegs.XTIMING7.bit.X2TIMING = 0;
// Zone will sample XREADY signal
XintfRegs.XTIMING7.bit.USEREADY = 0;
XintfRegs.XTIMING7.bit.READYMODE = 0; // sample asynchronous
// Size must be 1,1 - other values are reserved
XintfRegs.XTIMING7.bit.XSIZE = 3;
// Bank switching
// Assume Zone 7 is slow, so add additional BCYC cycles
// when ever switching from Zone 7 to another Zone.
// This will help avoid bus contention.
XintfRegs.XBANK.bit.BANK = 7;
XintfRegs.XBANK.bit.BCYC = 7;
//Force a pipeline flush to ensure that the write to
//the last register configured occurs before returning.
asm(" RPT #7 || NOP");
#endif
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -