⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 list.h

📁 xen虚拟机源代码安装包
💻 H
📖 第 1 页 / 共 3 页
字号:
 * Double linked lists with a single pointer list head. * Mostly useful for hash tables where the two pointer list head is * too wasteful. * You lose the ability to access the tail in O(1). */struct hlist_head {    struct hlist_node *first;};struct hlist_node {    struct hlist_node *next, **pprev;};#define HLIST_HEAD_INIT { .first = NULL }#define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)static inline void INIT_HLIST_NODE(struct hlist_node *h){    h->next = NULL;    h->pprev = NULL;}static inline int hlist_unhashed(const struct hlist_node *h){    return !h->pprev;}static inline int hlist_empty(const struct hlist_head *h){    return !h->first;}static inline void __hlist_del(struct hlist_node *n){    struct hlist_node *next = n->next;    struct hlist_node **pprev = n->pprev;    *pprev = next;    if (next)        next->pprev = pprev;}static inline void hlist_del(struct hlist_node *n){    __hlist_del(n);    n->next = LIST_POISON1;    n->pprev = LIST_POISON2;}/** * hlist_del_rcu - deletes entry from hash list without re-initialization * @n: the element to delete from the hash list. * * Note: list_unhashed() on entry does not return true after this, * the entry is in an undefined state. It is useful for RCU based * lockfree traversal. * * In particular, it means that we can not poison the forward * pointers that may still be used for walking the hash list. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_add_head_rcu() * or hlist_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_for_each_entry(). */static inline void hlist_del_rcu(struct hlist_node *n){    __hlist_del(n);    n->pprev = LIST_POISON2;}static inline void hlist_del_init(struct hlist_node *n){    if (!hlist_unhashed(n)) {        __hlist_del(n);        INIT_HLIST_NODE(n);    }}/* * hlist_replace_rcu - replace old entry by new one * @old : the element to be replaced * @new : the new element to insert * * The old entry will be replaced with the new entry atomically. */static inline void hlist_replace_rcu(struct hlist_node *old,                                     struct hlist_node *new){    struct hlist_node *next = old->next;    new->next = next;    new->pprev = old->pprev;    smp_wmb();    if (next)        new->next->pprev = &new->next;    *new->pprev = new;    old->pprev = LIST_POISON2;}static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h){    struct hlist_node *first = h->first;    n->next = first;    if (first)        first->pprev = &n->next;    h->first = n;    n->pprev = &h->first;}/** * hlist_add_head_rcu * @n: the element to add to the hash list. * @h: the list to add to. * * Description: * Adds the specified element to the specified hlist, * while permitting racing traversals. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_add_head_rcu() * or hlist_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_for_each_entry_rcu(), used to prevent memory-consistency * problems on Alpha CPUs.  Regardless of the type of CPU, the * list-traversal primitive must be guarded by rcu_read_lock(). */static inline void hlist_add_head_rcu(struct hlist_node *n,                                      struct hlist_head *h){    struct hlist_node *first = h->first;    n->next = first;    n->pprev = &h->first;    smp_wmb();    if (first)        first->pprev = &n->next;    h->first = n;}/* next must be != NULL */static inline void hlist_add_before(struct hlist_node *n,                    struct hlist_node *next){    n->pprev = next->pprev;    n->next = next;    next->pprev = &n->next;    *(n->pprev) = n;}static inline void hlist_add_after(struct hlist_node *n,                    struct hlist_node *next){    next->next = n->next;    n->next = next;    next->pprev = &n->next;    if(next->next)        next->next->pprev  = &next->next;}/** * hlist_add_before_rcu * @n: the new element to add to the hash list. * @next: the existing element to add the new element before. * * Description: * Adds the specified element to the specified hlist * before the specified node while permitting racing traversals. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_add_head_rcu() * or hlist_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_for_each_entry_rcu(), used to prevent memory-consistency * problems on Alpha CPUs. */static inline void hlist_add_before_rcu(struct hlist_node *n,                                        struct hlist_node *next){    n->pprev = next->pprev;    n->next = next;    smp_wmb();    next->pprev = &n->next;    *(n->pprev) = n;}/** * hlist_add_after_rcu * @prev: the existing element to add the new element after. * @n: the new element to add to the hash list. * * Description: * Adds the specified element to the specified hlist * after the specified node while permitting racing traversals. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_add_head_rcu() * or hlist_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_for_each_entry_rcu(), used to prevent memory-consistency * problems on Alpha CPUs. */static inline void hlist_add_after_rcu(struct hlist_node *prev,                                       struct hlist_node *n){    n->next = prev->next;    n->pprev = &prev->next;    smp_wmb();    prev->next = n;    if (n->next)        n->next->pprev = &n->next;}#define hlist_entry(ptr, type, member) container_of(ptr,type,member)#define hlist_for_each(pos, head)                                       \    for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; });     \         pos = pos->next)#define hlist_for_each_safe(pos, n, head)                       \    for (pos = (head)->first; pos && ({ n = pos->next; 1; });   \         pos = n)/** * hlist_for_each_entry    - iterate over list of given type * @tpos:    the type * to use as a loop cursor. * @pos:    the &struct hlist_node to use as a loop cursor. * @head:    the head for your list. * @member:    the name of the hlist_node within the struct. */#define hlist_for_each_entry(tpos, pos, head, member)                   \    for (pos = (head)->first;                                           \         pos && ({ prefetch(pos->next); 1;}) &&                         \         ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;});       \         pos = pos->next)/** * hlist_for_each_entry_continue - iterate over a hlist continuing *                                 after current point * @tpos:    the type * to use as a loop cursor. * @pos:    the &struct hlist_node to use as a loop cursor. * @member:    the name of the hlist_node within the struct. */#define hlist_for_each_entry_continue(tpos, pos, member)                \    for (pos = (pos)->next;                                             \         pos && ({ prefetch(pos->next); 1;}) &&                         \         ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;});       \         pos = pos->next)/** * hlist_for_each_entry_from - iterate over a hlist continuing from *                             current point * @tpos:    the type * to use as a loop cursor. * @pos:    the &struct hlist_node to use as a loop cursor. * @member:    the name of the hlist_node within the struct. */#define hlist_for_each_entry_from(tpos, pos, member)                    \    for (; pos && ({ prefetch(pos->next); 1;}) &&                       \         ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;});       \         pos = pos->next)/** * hlist_for_each_entry_safe - iterate over list of given type safe *                             against removal of list entry * @tpos:    the type * to use as a loop cursor. * @pos:    the &struct hlist_node to use as a loop cursor. * @n:        another &struct hlist_node to use as temporary storage * @head:    the head for your list. * @member:    the name of the hlist_node within the struct. */#define hlist_for_each_entry_safe(tpos, pos, n, head, member)           \    for (pos = (head)->first;                                           \         pos && ({ n = pos->next; 1; }) &&                              \         ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;});       \         pos = n)/** * hlist_for_each_entry_rcu - iterate over rcu list of given type * @tpos:   the type * to use as a loop cursor. * @pos:    the &struct hlist_node to use as a loop cursor. * @head:   the head for your list. * @member: the name of the hlist_node within the struct. * * This list-traversal primitive may safely run concurrently with * the _rcu list-mutation primitives such as hlist_add_head_rcu() * as long as the traversal is guarded by rcu_read_lock(). */#define hlist_for_each_entry_rcu(tpos, pos, head, member)               \     for (pos = (head)->first;                                          \          rcu_dereference(pos) && ({ prefetch(pos->next); 1;}) &&       \          ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;});      \          pos = pos->next)#endif /* __XEN_LIST_H__ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -