📄 bitops.h
字号:
#ifndef _X86_BITOPS_H#define _X86_BITOPS_H/* * Copyright 1992, Linus Torvalds. */#include <xen/config.h>#ifdef CONFIG_SMP#define LOCK_PREFIX "lock ; "#else#define LOCK_PREFIX ""#endif/* * We specify the memory operand as both input and output because the memory * operand is both read from and written to. Since the operand is in fact a * word array, we also specify "memory" in the clobbers list to indicate that * words other than the one directly addressed by the memory operand may be * modified. We don't use "+m" because the gcc manual says that it should be * used only when the constraint allows the operand to reside in a register. */#define ADDR (*(volatile long *) addr)#define CONST_ADDR (*(const volatile long *) addr)extern void __bitop_bad_size(void);#define bitop_bad_size(addr) (sizeof(*(addr)) < 4)/** * set_bit - Atomically set a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * This function is atomic and may not be reordered. See __set_bit() * if you do not require the atomic guarantees. * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */static inline void set_bit(int nr, volatile void *addr){ asm volatile ( LOCK_PREFIX "btsl %1,%0" : "=m" (ADDR) : "Ir" (nr), "m" (ADDR) : "memory");}#define set_bit(nr, addr) ({ \ if ( bitop_bad_size(addr) ) __bitop_bad_size(); \ set_bit(nr, addr); \})/** * __set_bit - Set a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * Unlike set_bit(), this function is non-atomic and may be reordered. * If it's called on the same region of memory simultaneously, the effect * may be that only one operation succeeds. */static inline void __set_bit(int nr, volatile void *addr){ asm volatile ( "btsl %1,%0" : "=m" (ADDR) : "Ir" (nr), "m" (ADDR) : "memory");}#define __set_bit(nr, addr) ({ \ if ( bitop_bad_size(addr) ) __bitop_bad_size(); \ __set_bit(nr, addr); \})/** * clear_bit - Clears a bit in memory * @nr: Bit to clear * @addr: Address to start counting from * * clear_bit() is atomic and may not be reordered. However, it does * not contain a memory barrier, so if it is used for locking purposes, * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() * in order to ensure changes are visible on other processors. */static inline void clear_bit(int nr, volatile void *addr){ asm volatile ( LOCK_PREFIX "btrl %1,%0" : "=m" (ADDR) : "Ir" (nr), "m" (ADDR) : "memory");}#define clear_bit(nr, addr) ({ \ if ( bitop_bad_size(addr) ) __bitop_bad_size(); \ clear_bit(nr, addr); \})/** * __clear_bit - Clears a bit in memory * @nr: Bit to clear * @addr: Address to start counting from * * Unlike clear_bit(), this function is non-atomic and may be reordered. * If it's called on the same region of memory simultaneously, the effect * may be that only one operation succeeds. */static inline void __clear_bit(int nr, volatile void *addr){ asm volatile ( "btrl %1,%0" : "=m" (ADDR) : "Ir" (nr), "m" (ADDR) : "memory");}#define __clear_bit(nr, addr) ({ \ if ( bitop_bad_size(addr) ) __bitop_bad_size(); \ __clear_bit(nr, addr); \})#define smp_mb__before_clear_bit() barrier()#define smp_mb__after_clear_bit() barrier()/** * __change_bit - Toggle a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * Unlike change_bit(), this function is non-atomic and may be reordered. * If it's called on the same region of memory simultaneously, the effect * may be that only one operation succeeds. */static inline void __change_bit(int nr, volatile void *addr){ asm volatile ( "btcl %1,%0" : "=m" (ADDR) : "Ir" (nr), "m" (ADDR) : "memory");}#define __change_bit(nr, addr) ({ \ if ( bitop_bad_size(addr) ) __bitop_bad_size(); \ __change_bit(nr, addr); \})/** * change_bit - Toggle a bit in memory * @nr: Bit to clear * @addr: Address to start counting from * * change_bit() is atomic and may not be reordered. * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */static inline void change_bit(int nr, volatile void *addr){ asm volatile ( LOCK_PREFIX "btcl %1,%0" : "=m" (ADDR) : "Ir" (nr), "m" (ADDR) : "memory");}#define change_bit(nr, addr) ({ \ if ( bitop_bad_size(addr) ) __bitop_bad_size(); \ change_bit(nr, addr); \})/** * test_and_set_bit - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */static inline int test_and_set_bit(int nr, volatile void *addr){ int oldbit; asm volatile ( LOCK_PREFIX "btsl %2,%1\n\tsbbl %0,%0" : "=r" (oldbit), "=m" (ADDR) : "Ir" (nr), "m" (ADDR) : "memory"); return oldbit;}#define test_and_set_bit(nr, addr) ({ \ if ( bitop_bad_size(addr) ) __bitop_bad_size(); \ test_and_set_bit(nr, addr); \})/** * __test_and_set_bit - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is non-atomic and can be reordered. * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */static inline int __test_and_set_bit(int nr, volatile void *addr){ int oldbit; asm volatile ( "btsl %2,%1\n\tsbbl %0,%0" : "=r" (oldbit), "=m" (ADDR) : "Ir" (nr), "m" (ADDR) : "memory"); return oldbit;}#define __test_and_set_bit(nr, addr) ({ \ if ( bitop_bad_size(addr) ) __bitop_bad_size(); \ __test_and_set_bit(nr, addr); \})/** * test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */static inline int test_and_clear_bit(int nr, volatile void *addr){ int oldbit; asm volatile ( LOCK_PREFIX "btrl %2,%1\n\tsbbl %0,%0" : "=r" (oldbit), "=m" (ADDR) : "Ir" (nr), "m" (ADDR) : "memory"); return oldbit;}#define test_and_clear_bit(nr, addr) ({ \ if ( bitop_bad_size(addr) ) __bitop_bad_size(); \ test_and_clear_bit(nr, addr); \})/** * __test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is non-atomic and can be reordered. * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */static inline int __test_and_clear_bit(int nr, volatile void *addr){ int oldbit; asm volatile ( "btrl %2,%1\n\tsbbl %0,%0" : "=r" (oldbit), "=m" (ADDR) : "Ir" (nr), "m" (ADDR) : "memory"); return oldbit;}#define __test_and_clear_bit(nr, addr) ({ \ if ( bitop_bad_size(addr) ) __bitop_bad_size(); \ __test_and_clear_bit(nr, addr); \})/* WARNING: non atomic and it can be reordered! */static inline int __test_and_change_bit(int nr, volatile void *addr){ int oldbit; asm volatile ( "btcl %2,%1\n\tsbbl %0,%0" : "=r" (oldbit), "=m" (ADDR) : "Ir" (nr), "m" (ADDR) : "memory"); return oldbit;}#define __test_and_change_bit(nr, addr) ({ \ if ( bitop_bad_size(addr) ) __bitop_bad_size(); \ __test_and_change_bit(nr, addr); \})/** * test_and_change_bit - Change a bit and return its new value * @nr: Bit to set * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */static inline int test_and_change_bit(int nr, volatile void *addr){ int oldbit; asm volatile ( LOCK_PREFIX "btcl %2,%1\n\tsbbl %0,%0" : "=r" (oldbit), "=m" (ADDR) : "Ir" (nr), "m" (ADDR) : "memory"); return oldbit;}#define test_and_change_bit(nr, addr) ({ \ if ( bitop_bad_size(addr) ) __bitop_bad_size(); \ test_and_change_bit(nr, addr); \})static inline int constant_test_bit(int nr, const volatile void *addr){ return ((1U << (nr & 31)) & (((const volatile unsigned int *)addr)[nr >> 5])) != 0;}static inline int variable_test_bit(int nr, const volatile void *addr){ int oldbit; asm volatile ( "btl %2,%1\n\tsbbl %0,%0" : "=r" (oldbit) : "m" (CONST_ADDR), "Ir" (nr) : "memory" ); return oldbit;}#define test_bit(nr, addr) ({ \ if ( bitop_bad_size(addr) ) __bitop_bad_size(); \ (__builtin_constant_p(nr) ? \ constant_test_bit((nr),(addr)) : \ variable_test_bit((nr),(addr))); \})extern unsigned int __find_first_bit( const unsigned long *addr, unsigned int size);extern unsigned int __find_next_bit( const unsigned long *addr, unsigned int size, unsigned int offset);extern unsigned int __find_first_zero_bit( const unsigned long *addr, unsigned int size);extern unsigned int __find_next_zero_bit( const unsigned long *addr, unsigned int size, unsigned int offset);static inline unsigned int __scanbit(unsigned long val, unsigned long max){ asm ( "bsf %1,%0 ; cmovz %2,%0" : "=&r" (val) : "r" (val), "r" (max) ); return (unsigned int)val;}/** * find_first_bit - find the first set bit in a memory region * @addr: The address to start the search at * @size: The maximum size to search * * Returns the bit-number of the first set bit, not the number of the byte * containing a bit. */#define find_first_bit(addr,size) \((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \ (__scanbit(*(const unsigned long *)addr, size)) : \ __find_first_bit(addr,size)))/** * find_next_bit - find the first set bit in a memory region * @addr: The address to base the search on * @offset: The bitnumber to start searching at * @size: The maximum size to search */#define find_next_bit(addr,size,off) \((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \ ((off) + (__scanbit((*(const unsigned long *)addr) >> (off), size))) : \ __find_next_bit(addr,size,off)))/** * find_first_zero_bit - find the first zero bit in a memory region * @addr: The address to start the search at * @size: The maximum size to search * * Returns the bit-number of the first zero bit, not the number of the byte * containing a bit. */#define find_first_zero_bit(addr,size) \((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \ (__scanbit(~*(const unsigned long *)addr, size)) : \ __find_first_zero_bit(addr,size)))/** * find_next_zero_bit - find the first zero bit in a memory region * @addr: The address to base the search on * @offset: The bitnumber to start searching at * @size: The maximum size to search */#define find_next_zero_bit(addr,size,off) \((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \ ((off)+(__scanbit(~(((*(const unsigned long *)addr)) >> (off)), size))) : \ __find_next_zero_bit(addr,size,off)))/** * find_first_set_bit - find the first set bit in @word * @word: the word to search * * Returns the bit-number of the first set bit. The input must *not* be zero. */static inline unsigned int find_first_set_bit(unsigned long word){ asm ( "bsf %1,%0" : "=r" (word) : "r" (word) ); return (unsigned int)word;}/** * ffs - find first bit set * @x: the word to search * * This is defined the same way as the libc and compiler builtin ffs routines. */static inline int ffs(unsigned long x){ long r; asm ( "bsf %1,%0\n\t" "jnz 1f\n\t" "mov $-1,%0\n" "1:" : "=r" (r) : "rm" (x)); return (int)r+1;}/** * fls - find last bit set * @x: the word to search * * This is defined the same way as ffs. */static inline int fls(unsigned long x){ long r; asm ( "bsr %1,%0\n\t" "jnz 1f\n\t" "mov $-1,%0\n" "1:" : "=r" (r) : "rm" (x)); return (int)r+1;}/** * hweightN - returns the hamming weight of a N-bit word * @x: the word to weigh * * The Hamming Weight of a number is the total number of bits set in it. */#define hweight64(x) generic_hweight64(x)#define hweight32(x) generic_hweight32(x)#define hweight16(x) generic_hweight16(x)#define hweight8(x) generic_hweight8(x)#endif /* _X86_BITOPS_H */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -