⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sn2_smp.c

📁 xen虚拟机源代码安装包
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * SN2 Platform specific SMP Support * * This file is subject to the terms and conditions of the GNU General Public * License.  See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2000-2006 Silicon Graphics, Inc. All rights reserved. */#include <linux/init.h>#include <linux/kernel.h>#include <linux/spinlock.h>#include <linux/threads.h>#include <linux/sched.h>#include <linux/smp.h>#include <linux/interrupt.h>#include <linux/irq.h>#include <linux/mmzone.h>#include <linux/module.h>#include <linux/bitops.h>#include <linux/nodemask.h>#include <linux/proc_fs.h>#include <linux/seq_file.h>#include <asm/processor.h>#include <asm/irq.h>#include <asm/sal.h>#include <asm/system.h>#include <asm/delay.h>#include <asm/io.h>#include <asm/smp.h>#include <asm/tlb.h>#include <asm/numa.h>#include <asm/hw_irq.h>#include <asm/current.h>#ifdef XEN#include <asm/sn/arch.h>#endif#include <asm/sn/sn_cpuid.h>#include <asm/sn/sn_sal.h>#include <asm/sn/addrs.h>#include <asm/sn/shub_mmr.h>#include <asm/sn/nodepda.h>#include <asm/sn/rw_mmr.h>DEFINE_PER_CPU(struct ptc_stats, ptcstats);DECLARE_PER_CPU(struct ptc_stats, ptcstats);static  __cacheline_aligned DEFINE_SPINLOCK(sn2_global_ptc_lock);extern unsigned longsn2_ptc_deadlock_recovery_core(volatile unsigned long *, unsigned long,			       volatile unsigned long *, unsigned long,			       volatile unsigned long *, unsigned long);voidsn2_ptc_deadlock_recovery(short *, short, short, int,			  volatile unsigned long *, unsigned long,			  volatile unsigned long *, unsigned long);/* * Note: some is the following is captured here to make degugging easier * (the macros make more sense if you see the debug patch - not posted) */#define sn2_ptctest	0#define local_node_uses_ptc_ga(sh1)	((sh1) ? 1 : 0)#define max_active_pio(sh1)		((sh1) ? 32 : 7)#define reset_max_active_on_deadlock()	1#ifndef XEN#define PTC_LOCK(sh1)			((sh1) ? &sn2_global_ptc_lock : &sn_nodepda->ptc_lock)#else#define PTC_LOCK(sh1)			&sn2_global_ptc_lock#endifstruct ptc_stats {	unsigned long ptc_l;	unsigned long change_rid;	unsigned long shub_ptc_flushes;	unsigned long nodes_flushed;	unsigned long deadlocks;	unsigned long deadlocks2;	unsigned long lock_itc_clocks;	unsigned long shub_itc_clocks;	unsigned long shub_itc_clocks_max;	unsigned long shub_ptc_flushes_not_my_mm;};#define sn2_ptctest	0static inline unsigned long wait_piowc(void){	volatile unsigned long *piows;	unsigned long zeroval, ws;	piows = pda->pio_write_status_addr;	zeroval = pda->pio_write_status_val;	do {		cpu_relax();	} while (((ws = *piows) & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK) != zeroval);	return (ws & SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK) != 0;}#ifndef XEN  /* No idea if Xen will ever support this *//** * sn_migrate - SN-specific task migration actions * @task: Task being migrated to new CPU * * SN2 PIO writes from separate CPUs are not guaranteed to arrive in order. * Context switching user threads which have memory-mapped MMIO may cause * PIOs to issue from seperate CPUs, thus the PIO writes must be drained * from the previous CPU's Shub before execution resumes on the new CPU. */void sn_migrate(struct task_struct *task){	pda_t *last_pda = pdacpu(task_thread_info(task)->last_cpu);	volatile unsigned long *adr = last_pda->pio_write_status_addr;	unsigned long val = last_pda->pio_write_status_val;	/* Drain PIO writes from old CPU's Shub */	while (unlikely((*adr & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK)			!= val))		cpu_relax();}void sn_tlb_migrate_finish(struct mm_struct *mm){	/* flush_tlb_mm is inefficient if more than 1 users of mm */#ifndef XEN	if (mm == current->mm && mm && atomic_read(&mm->mm_users) == 1)#else	if (mm == &current->arch.mm && mm && atomic_read(&mm->mm_users) == 1)#endif		flush_tlb_mm(mm);}#endif/** * sn2_global_tlb_purge - globally purge translation cache of virtual address range * @mm: mm_struct containing virtual address range * @start: start of virtual address range * @end: end of virtual address range * @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc)) * * Purges the translation caches of all processors of the given virtual address * range. * * Note: * 	- cpu_vm_mask is a bit mask that indicates which cpus have loaded the context. * 	- cpu_vm_mask is converted into a nodemask of the nodes containing the * 	  cpus in cpu_vm_mask. *	- if only one bit is set in cpu_vm_mask & it is the current cpu & the *	  process is purging its own virtual address range, then only the *	  local TLB needs to be flushed. This flushing can be done using *	  ptc.l. This is the common case & avoids the global spinlock. *	- if multiple cpus have loaded the context, then flushing has to be *	  done with ptc.g/MMRs under protection of the global ptc_lock. */#ifdef XEN  /* Xen is soooooooo stupid! */// static cpumask_t mask_all = CPU_MASK_ALL;#endif#ifdef XENstatic DEFINE_SPINLOCK(sn2_ptcg_lock);struct sn_flush_struct {	unsigned long start;	unsigned long end;	unsigned long nbits;};static void sn_flush_ptcga_cpu(void *ptr){	struct sn_flush_struct *sn_flush = ptr;	unsigned long start, end, nbits;	start = sn_flush->start;	end = sn_flush->end;	nbits = sn_flush->nbits;	/*	 * Contention me harder!!!	 */	/* HW requires global serialization of ptc.ga.  */	spin_lock(&sn2_ptcg_lock);	{		do {			/*			 * Flush ALAT entries also.			 */			ia64_ptcga(start, (nbits<<2));			ia64_srlz_i();			start += (1UL << nbits);		} while (start < end);	}	spin_unlock(&sn2_ptcg_lock);}voidsn2_global_tlb_purge(unsigned long start,		     unsigned long end, unsigned long nbits){	nodemask_t nodes_flushed;	cpumask_t selected_cpus;	int cpu, cnode, i;	static DEFINE_SPINLOCK(sn2_ptcg_lock2);	nodes_clear(nodes_flushed);	cpus_clear(selected_cpus);	spin_lock(&sn2_ptcg_lock2);	node_set(cpu_to_node(smp_processor_id()), nodes_flushed);	i = 0;	for_each_cpu(cpu) {		cnode = cpu_to_node(cpu);		if (!node_isset(cnode, nodes_flushed)) {			cpu_set(cpu, selected_cpus);			i++;		}		node_set(cnode, nodes_flushed);	}	/* HW requires global serialization of ptc.ga.  */	spin_lock(&sn2_ptcg_lock);	{		do {			/*			 * Flush ALAT entries also.			 */			ia64_ptcga(start, (nbits<<2));			ia64_srlz_i();			start += (1UL << nbits);		} while (start < end);	}	spin_unlock(&sn2_ptcg_lock);	if (i) {		struct sn_flush_struct flush_data;		flush_data.start = start;		flush_data.end = end;		flush_data.nbits = nbits;		on_selected_cpus(selected_cpus, sn_flush_ptcga_cpu,				 &flush_data, 1, 1);	}	spin_unlock(&sn2_ptcg_lock2);}#elsevoidsn2_global_tlb_purge(struct mm_struct *mm, unsigned long start,		     unsigned long end, unsigned long nbits){	int i, ibegin, shub1, cnode, mynasid, cpu, lcpu = 0, nasid;	int mymm = (mm == current->active_mm && mm == current->mm);	int use_cpu_ptcga;	volatile unsigned long *ptc0, *ptc1;	unsigned long itc, itc2, flags, data0 = 0, data1 = 0, rr_value, old_rr = 0;	short nasids[MAX_NUMNODES], nix;	nodemask_t nodes_flushed;	int active, max_active, deadlock;	nodes_clear(nodes_flushed);	i = 0;#ifndef XEN  /* One day Xen will grow up! */	for_each_cpu_mask(cpu, mm->cpu_vm_mask) {		cnode = cpu_to_node(cpu);		node_set(cnode, nodes_flushed);		lcpu = cpu;		i++;	}#else	for_each_cpu(cpu) {		cnode = cpu_to_node(cpu);		node_set(cnode, nodes_flushed);		lcpu = cpu;		i++;	}#endif	if (i == 0)		return;	preempt_disable();#ifndef XEN	if (likely(i == 1 && lcpu == smp_processor_id() && mymm)) {		do {			ia64_ptcl(start, nbits << 2);			start += (1UL << nbits);		} while (start < end);		ia64_srlz_i();		__get_cpu_var(ptcstats).ptc_l++;		preempt_enable();		return;	}	if (atomic_read(&mm->mm_users) == 1 && mymm) {		flush_tlb_mm(mm);		__get_cpu_var(ptcstats).change_rid++;		preempt_enable();		return;	}#endif	itc = ia64_get_itc();	nix = 0;	for_each_node_mask(cnode, nodes_flushed)		nasids[nix++] = cnodeid_to_nasid(cnode);#ifndef XEN	rr_value = (mm->context << 3) | REGION_NUMBER(start);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -