📄 efi.c
字号:
u64 attr; /* * For /dev/mem mmap, we use user mappings, but if the region is * in kern_memmap (and hence may be covered by a kernel mapping), * we must use the same attribute as the kernel mapping. */ attr = kern_mem_attribute(phys_addr, size); if (attr & EFI_MEMORY_WB) return pgprot_cacheable(vma_prot); else if (attr & EFI_MEMORY_UC) return pgprot_noncached(vma_prot); /* * Some chipsets don't support UC access to memory. If * WB is supported, we prefer that. */ if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB) return pgprot_cacheable(vma_prot); return pgprot_noncached(vma_prot);}#endifint __initefi_uart_console_only(void){ efi_status_t status; char *s, name[] = "ConOut"; efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID; efi_char16_t *utf16, name_utf16[32]; unsigned char data[1024]; unsigned long size = sizeof(data); struct efi_generic_dev_path *hdr, *end_addr; int uart = 0; /* Convert to UTF-16 */ utf16 = name_utf16; s = name; while (*s) *utf16++ = *s++ & 0x7f; *utf16 = 0; status = efi.get_variable(name_utf16, &guid, NULL, &size, data); if (status != EFI_SUCCESS) { printk(KERN_ERR "No EFI %s variable?\n", name); return 0; } hdr = (struct efi_generic_dev_path *) data; end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size); while (hdr < end_addr) { if (hdr->type == EFI_DEV_MSG && hdr->sub_type == EFI_DEV_MSG_UART) uart = 1; else if (hdr->type == EFI_DEV_END_PATH || hdr->type == EFI_DEV_END_PATH2) { if (!uart) return 0; if (hdr->sub_type == EFI_DEV_END_ENTIRE) return 1; uart = 0; } hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length); } printk(KERN_ERR "Malformed %s value\n", name); return 0;}/* * Look for the first granule aligned memory descriptor memory * that is big enough to hold EFI memory map. Make sure this * descriptor is atleast granule sized so it does not get trimmed */struct kern_memdesc *find_memmap_space (void){ u64 contig_low=0, contig_high=0; u64 as = 0, ae; void *efi_map_start, *efi_map_end, *p, *q; efi_memory_desc_t *md, *pmd = NULL, *check_md; u64 space_needed, efi_desc_size; unsigned long total_mem = 0; efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; /* * Worst case: we need 3 kernel descriptors for each efi descriptor * (if every entry has a WB part in the middle, and UC head and tail), * plus one for the end marker. */ space_needed = sizeof(kern_memdesc_t) * (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1); for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) { md = p; if (!efi_wb(md)) { continue; } if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) { contig_low = GRANULEROUNDUP(md->phys_addr); contig_high = efi_md_end(md); for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) { check_md = q; if (!efi_wb(check_md)) break; if (contig_high != check_md->phys_addr) break; contig_high = efi_md_end(check_md); } contig_high = GRANULEROUNDDOWN(contig_high); } if (!is_memory_available(md) || md->type == EFI_LOADER_DATA) continue; /* Round ends inward to granule boundaries */ as = max(contig_low, md->phys_addr); ae = min(contig_high, efi_md_end(md)); /* keep within max_addr= and min_addr= command line arg */ as = max(as, min_addr); ae = min(ae, max_addr); if (ae <= as) continue; /* avoid going over mem= command line arg */ if (total_mem + (ae - as) > mem_limit) ae -= total_mem + (ae - as) - mem_limit; if (ae <= as) continue; if (ae - as > space_needed) break; } if (p >= efi_map_end) panic("Can't allocate space for kernel memory descriptors"); return __va(as);}/* * Walk the EFI memory map and gather all memory available for kernel * to use. We can allocate partial granules only if the unavailable * parts exist, and are WB. */voidefi_memmap_init(unsigned long *s, unsigned long *e){ struct kern_memdesc *k, *prev = NULL; u64 contig_low=0, contig_high=0; u64 as, ae, lim; void *efi_map_start, *efi_map_end, *p, *q; efi_memory_desc_t *md, *pmd = NULL, *check_md; u64 efi_desc_size; unsigned long total_mem = 0; k = kern_memmap = find_memmap_space(); efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) { md = p; if (!efi_wb(md)) { if (efi_uc(md) && (md->type == EFI_CONVENTIONAL_MEMORY || md->type == EFI_BOOT_SERVICES_DATA)) { k->attribute = EFI_MEMORY_UC; k->start = md->phys_addr; k->num_pages = md->num_pages; k++; } continue; }#ifdef XEN /* this works around a problem in the ski bootloader */ if (running_on_sim && md->type != EFI_CONVENTIONAL_MEMORY) continue;#endif if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) { contig_low = GRANULEROUNDUP(md->phys_addr); contig_high = efi_md_end(md); for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) { check_md = q; if (!efi_wb(check_md)) break; if (contig_high != check_md->phys_addr) break; contig_high = efi_md_end(check_md); } contig_high = GRANULEROUNDDOWN(contig_high); } if (!is_memory_available(md)) continue;#ifdef CONFIG_CRASH_DUMP /* saved_max_pfn should ignore max_addr= command line arg */ if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT)) saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);#endif /* * Round ends inward to granule boundaries * Give trimmings to uncached allocator */ if (md->phys_addr < contig_low) { lim = min(efi_md_end(md), contig_low); if (efi_uc(md)) { if (k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC && kmd_end(k-1) == md->phys_addr) { (k-1)->num_pages += (lim - md->phys_addr) >> EFI_PAGE_SHIFT; } else { k->attribute = EFI_MEMORY_UC; k->start = md->phys_addr; k->num_pages = (lim - md->phys_addr) >> EFI_PAGE_SHIFT; k++; } } as = contig_low; } else as = md->phys_addr; if (efi_md_end(md) > contig_high) { lim = max(md->phys_addr, contig_high); if (efi_uc(md)) { if (lim == md->phys_addr && k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC && kmd_end(k-1) == md->phys_addr) { (k-1)->num_pages += md->num_pages; } else { k->attribute = EFI_MEMORY_UC; k->start = lim; k->num_pages = (efi_md_end(md) - lim) >> EFI_PAGE_SHIFT; k++; } } ae = contig_high; } else ae = efi_md_end(md); /* keep within max_addr= and min_addr= command line arg */ as = max(as, min_addr); ae = min(ae, max_addr); if (ae <= as) continue; /* avoid going over mem= command line arg */ if (total_mem + (ae - as) > mem_limit) ae -= total_mem + (ae - as) - mem_limit; if (ae <= as) continue; if (prev && kmd_end(prev) == md->phys_addr) { prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT; total_mem += ae - as; continue; } k->attribute = EFI_MEMORY_WB; k->start = as; k->num_pages = (ae - as) >> EFI_PAGE_SHIFT; total_mem += ae - as; prev = k++; } k->start = ~0L; /* end-marker */ /* reserve the memory we are using for kern_memmap */ *s = (u64)kern_memmap; *e = (u64)++k;}#ifndef XENvoidefi_initialize_iomem_resources(struct resource *code_resource, struct resource *data_resource){ struct resource *res; void *efi_map_start, *efi_map_end, *p; efi_memory_desc_t *md; u64 efi_desc_size; char *name; unsigned long flags; efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; res = NULL; for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { md = p; if (md->num_pages == 0) /* should not happen */ continue; flags = IORESOURCE_MEM; switch (md->type) { case EFI_MEMORY_MAPPED_IO: case EFI_MEMORY_MAPPED_IO_PORT_SPACE: continue; case EFI_LOADER_CODE: case EFI_LOADER_DATA: case EFI_BOOT_SERVICES_DATA: case EFI_BOOT_SERVICES_CODE: case EFI_CONVENTIONAL_MEMORY: if (md->attribute & EFI_MEMORY_WP) { name = "System ROM"; flags |= IORESOURCE_READONLY; } else { name = "System RAM"; } break; case EFI_ACPI_MEMORY_NVS: name = "ACPI Non-volatile Storage"; flags |= IORESOURCE_BUSY; break; case EFI_UNUSABLE_MEMORY: name = "reserved"; flags |= IORESOURCE_BUSY | IORESOURCE_DISABLED; break; case EFI_RESERVED_TYPE: case EFI_RUNTIME_SERVICES_CODE: case EFI_RUNTIME_SERVICES_DATA: case EFI_ACPI_RECLAIM_MEMORY: default: name = "reserved"; flags |= IORESOURCE_BUSY; break; } if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) { printk(KERN_ERR "failed to alocate resource for iomem\n"); return; } res->name = name; res->start = md->phys_addr; res->end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1; res->flags = flags; if (insert_resource(&iomem_resource, res) < 0) kfree(res); else { /* * We don't know which region contains * kernel data so we try it repeatedly and * let the resource manager test it. */ insert_resource(res, code_resource); insert_resource(res, data_resource);#ifdef CONFIG_KEXEC insert_resource(res, &efi_memmap_res); insert_resource(res, &boot_param_res); if (crashk_res.end > crashk_res.start) insert_resource(res, &crashk_res);#endif } }}#endif /* XEN */#if defined(CONFIG_KEXEC) || defined(XEN)/* find a block of memory aligned to 64M exclude reserved regions rsvd_regions are sorted */unsigned long __initkdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n){ int i; u64 start, end; u64 alignment = 1UL << _PAGE_SIZE_64M; void *efi_map_start, *efi_map_end, *p; efi_memory_desc_t *md; u64 efi_desc_size; efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { md = p; if (!efi_wb(md)) continue; start = ALIGN(md->phys_addr, alignment); end = efi_md_end(md); for (i = 0; i < n; i++) { if (__pa(r[i].start) >= start && __pa(r[i].end) < end) { if (__pa(r[i].start) > start + size) return start; start = ALIGN(__pa(r[i].end), alignment); if (i < n-1 && __pa(r[i+1].start) < start + size) continue; else break; } } if (end > start + size) return start; } printk(KERN_WARNING "Cannot reserve 0x%lx byte of memory for crashdump\n", size); return ~0UL;}#endif#ifndef XEN#ifdef CONFIG_PROC_VMCORE/* locate the size find a the descriptor at a certain address */unsigned longvmcore_find_descriptor_size (unsigned long address){ void *efi_map_start, *efi_map_end, *p; efi_memory_desc_t *md; u64 efi_desc_size; unsigned long ret = 0; efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { md = p; if (efi_wb(md) && md->type == EFI_LOADER_DATA && md->phys_addr == address) { ret = efi_md_size(md); break; } } if (ret == 0) printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n"); return ret;}#endif#endif /* XEN */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -