📄 efi.c
字号:
/* * Extensible Firmware Interface * * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999 * * Copyright (C) 1999 VA Linux Systems * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> * Copyright (C) 1999-2003 Hewlett-Packard Co. * David Mosberger-Tang <davidm@hpl.hp.com> * Stephane Eranian <eranian@hpl.hp.com> * (c) Copyright 2006 Hewlett-Packard Development Company, L.P. * Bjorn Helgaas <bjorn.helgaas@hp.com> * * All EFI Runtime Services are not implemented yet as EFI only * supports physical mode addressing on SoftSDV. This is to be fixed * in a future version. --drummond 1999-07-20 * * Implemented EFI runtime services and virtual mode calls. --davidm * * Goutham Rao: <goutham.rao@intel.com> * Skip non-WB memory and ignore empty memory ranges. */#include <linux/module.h>#include <linux/bootmem.h>#include <linux/kernel.h>#include <linux/init.h>#include <linux/types.h>#include <linux/time.h>#include <linux/efi.h>#include <linux/kexec.h>#include <asm/io.h>#include <asm/kregs.h>#include <asm/meminit.h>#include <asm/pgtable.h>#include <asm/processor.h>#include <asm/mca.h>#define EFI_DEBUG 0extern efi_status_t efi_call_phys (void *, ...);#ifdef XEN/* this should be defined in linux/kernel.h */extern unsigned long long memparse (char *ptr, char **retptr);/* this should be defined in linux/efi.h *///#define EFI_INVALID_TABLE_ADDR (void *)(~0UL)#endifstruct efi efi;EXPORT_SYMBOL(efi);static efi_runtime_services_t *runtime;#if defined(XEN) && !defined(CONFIG_VIRTUAL_FRAME_TABLE)// this is a temporary hack to avoid CONFIG_VIRTUAL_MEM_MAPstatic unsigned long mem_limit = ~0UL, max_addr = 0x100000000UL, min_addr = 0UL;#elsestatic unsigned long mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;#endif#define efi_call_virt(f, args...) (*(f))(args)#define STUB_GET_TIME(prefix, adjust_arg) \static efi_status_t \prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \{ \ struct ia64_fpreg fr[6]; \ efi_time_cap_t *atc = NULL; \ efi_status_t ret; \ XEN_EFI_RR_DECLARE(rr6, rr7); \ \ if (tc) \ atc = adjust_arg(tc); \ ia64_save_scratch_fpregs(fr); \ XEN_EFI_RR_ENTER(rr6, rr7); \ ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \ XEN_EFI_RR_LEAVE(rr6, rr7); \ ia64_load_scratch_fpregs(fr); \ return ret; \}#define STUB_SET_TIME(prefix, adjust_arg) \static efi_status_t \prefix##_set_time (efi_time_t *tm) \{ \ struct ia64_fpreg fr[6]; \ efi_status_t ret; \ XEN_EFI_RR_DECLARE(rr6, rr7); \ \ ia64_save_scratch_fpregs(fr); \ XEN_EFI_RR_ENTER(rr6, rr7); \ ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm)); \ XEN_EFI_RR_LEAVE(rr6, rr7); \ ia64_load_scratch_fpregs(fr); \ return ret; \}#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \static efi_status_t \prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) \{ \ struct ia64_fpreg fr[6]; \ efi_status_t ret; \ XEN_EFI_RR_DECLARE(rr6, rr7); \ \ ia64_save_scratch_fpregs(fr); \ XEN_EFI_RR_ENTER(rr6, rr7); \ ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \ adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \ XEN_EFI_RR_LEAVE(rr6, rr7); \ ia64_load_scratch_fpregs(fr); \ return ret; \}#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \static efi_status_t \prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \{ \ struct ia64_fpreg fr[6]; \ efi_time_t *atm = NULL; \ efi_status_t ret; \ XEN_EFI_RR_DECLARE(rr6, rr7); \ \ if (tm) \ atm = adjust_arg(tm); \ ia64_save_scratch_fpregs(fr); \ XEN_EFI_RR_ENTER(rr6, rr7); \ ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \ enabled, atm); \ XEN_EFI_RR_LEAVE(rr6, rr7); \ ia64_load_scratch_fpregs(fr); \ return ret; \}#define STUB_GET_VARIABLE(prefix, adjust_arg) \static efi_status_t \prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \ unsigned long *data_size, void *data) \{ \ struct ia64_fpreg fr[6]; \ u32 *aattr = NULL; \ efi_status_t ret; \ XEN_EFI_RR_DECLARE(rr6, rr7); \ \ if (attr) \ aattr = adjust_arg(attr); \ ia64_save_scratch_fpregs(fr); \ XEN_EFI_RR_ENTER(rr6, rr7); \ ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable), \ adjust_arg(name), adjust_arg(vendor), aattr, \ adjust_arg(data_size), adjust_arg(data)); \ XEN_EFI_RR_LEAVE(rr6, rr7); \ ia64_load_scratch_fpregs(fr); \ return ret; \}#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \static efi_status_t \prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) \{ \ struct ia64_fpreg fr[6]; \ efi_status_t ret; \ XEN_EFI_RR_DECLARE(rr6, rr7); \ \ ia64_save_scratch_fpregs(fr); \ XEN_EFI_RR_ENTER(rr6, rr7); \ ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable), \ adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \ XEN_EFI_RR_LEAVE(rr6, rr7); \ ia64_load_scratch_fpregs(fr); \ return ret; \}#define STUB_SET_VARIABLE(prefix, adjust_arg) \static efi_status_t \prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr, \ unsigned long data_size, void *data) \{ \ struct ia64_fpreg fr[6]; \ efi_status_t ret; \ XEN_EFI_RR_DECLARE(rr6, rr7); \ \ ia64_save_scratch_fpregs(fr); \ XEN_EFI_RR_ENTER(rr6, rr7); \ ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable), \ adjust_arg(name), adjust_arg(vendor), attr, data_size, \ adjust_arg(data)); \ XEN_EFI_RR_LEAVE(rr6, rr7); \ ia64_load_scratch_fpregs(fr); \ return ret; \}#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \static efi_status_t \prefix##_get_next_high_mono_count (u32 *count) \{ \ struct ia64_fpreg fr[6]; \ efi_status_t ret; \ XEN_EFI_RR_DECLARE(rr6, rr7); \ \ ia64_save_scratch_fpregs(fr); \ XEN_EFI_RR_ENTER(rr6, rr7); \ ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \ __va(runtime->get_next_high_mono_count), adjust_arg(count)); \ XEN_EFI_RR_LEAVE(rr6, rr7); \ ia64_load_scratch_fpregs(fr); \ return ret; \}#define STUB_RESET_SYSTEM(prefix, adjust_arg) \static void \prefix##_reset_system (int reset_type, efi_status_t status, \ unsigned long data_size, efi_char16_t *data) \{ \ struct ia64_fpreg fr[6]; \ efi_char16_t *adata = NULL; \ XEN_EFI_RR_DECLARE(rr6, rr7); \ \ if (data) \ adata = adjust_arg(data); \ \ ia64_save_scratch_fpregs(fr); \ XEN_EFI_RR_ENTER(rr6, rr7); \ efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system), \ reset_type, status, data_size, adata); \ /* should not return, but just in case... */ \ XEN_EFI_RR_LEAVE(rr6, rr7); \ ia64_load_scratch_fpregs(fr); \}#define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))STUB_GET_TIME(phys, phys_ptr)STUB_SET_TIME(phys, phys_ptr)STUB_GET_WAKEUP_TIME(phys, phys_ptr)STUB_SET_WAKEUP_TIME(phys, phys_ptr)STUB_GET_VARIABLE(phys, phys_ptr)STUB_GET_NEXT_VARIABLE(phys, phys_ptr)STUB_SET_VARIABLE(phys, phys_ptr)STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)STUB_RESET_SYSTEM(phys, phys_ptr)#define id(arg) argSTUB_GET_TIME(virt, id)STUB_SET_TIME(virt, id)STUB_GET_WAKEUP_TIME(virt, id)STUB_SET_WAKEUP_TIME(virt, id)STUB_GET_VARIABLE(virt, id)STUB_GET_NEXT_VARIABLE(virt, id)STUB_SET_VARIABLE(virt, id)STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)STUB_RESET_SYSTEM(virt, id)#ifndef XENvoidefi_gettimeofday (struct timespec *ts){ efi_time_t tm; memset(ts, 0, sizeof(ts)); if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) return; ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second); ts->tv_nsec = tm.nanosecond;}#endifstatic intis_memory_available (efi_memory_desc_t *md){ if (!(md->attribute & EFI_MEMORY_WB)) return 0; switch (md->type) { case EFI_LOADER_CODE: case EFI_LOADER_DATA: case EFI_BOOT_SERVICES_CODE: case EFI_BOOT_SERVICES_DATA: case EFI_CONVENTIONAL_MEMORY: return 1; } return 0;}typedef struct kern_memdesc { u64 attribute; u64 start; u64 num_pages;} kern_memdesc_t;static kern_memdesc_t *kern_memmap;#define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)static inline u64kmd_end(kern_memdesc_t *kmd){ return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));}static inline u64efi_md_end(efi_memory_desc_t *md){ return (md->phys_addr + efi_md_size(md));}static inline intefi_wb(efi_memory_desc_t *md){ return (md->attribute & EFI_MEMORY_WB);}static inline intefi_uc(efi_memory_desc_t *md){ return (md->attribute & EFI_MEMORY_UC);}static voidwalk (efi_freemem_callback_t callback, void *arg, u64 attr){ kern_memdesc_t *k; u64 start, end, voff; voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET; for (k = kern_memmap; k->start != ~0UL; k++) { if (k->attribute != attr) continue; start = PAGE_ALIGN(k->start); end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK; if (start < end) if ((*callback)(start + voff, end + voff, arg) < 0) return; }}/* * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that * has memory that is available for OS use. */voidefi_memmap_walk (efi_freemem_callback_t callback, void *arg){ walk(callback, arg, EFI_MEMORY_WB);}/* * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that * has memory that is available for uncached allocator. */voidefi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg){ walk(callback, arg, EFI_MEMORY_UC);}/* * Look for the PAL_CODE region reported by EFI and maps it using an * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor * Abstraction Layer chapter 11 in ADAG */#ifdef XENstatic void *__efi_get_pal_addr (void)#elsevoid *efi_get_pal_addr (void)#endif{ void *efi_map_start, *efi_map_end, *p; efi_memory_desc_t *md; u64 efi_desc_size; int pal_code_count = 0; u64 vaddr, mask; efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { md = p; if (md->type != EFI_PAL_CODE) continue; if (++pal_code_count > 1) { printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n", md->phys_addr); continue; } /* * The only ITLB entry in region 7 that is used is the one installed by * __start(). That entry covers a 64MB range. */ mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1); vaddr = PAGE_OFFSET + md->phys_addr; /* * We must check that the PAL mapping won't overlap with the kernel * mapping. * * PAL code is guaranteed to be aligned on a power of 2 between 4k and * 256KB and that only one ITR is needed to map it. This implies that the * PAL code is always aligned on its size, i.e., the closest matching page * size supported by the TLB. Therefore PAL code is guaranteed never to * cross a 64MB unless it is bigger than 64MB (very unlikely!). So for * now the following test is enough to determine whether or not we need a * dedicated ITR for the PAL code. */ if ((vaddr & mask) == (KERNEL_START & mask)) { printk(KERN_INFO "%s: no need to install ITR for PAL code\n", __FUNCTION__); continue; } if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE) panic("Woah! PAL code size bigger than a granule!");#if EFI_DEBUG mask = ~((1 << IA64_GRANULE_SHIFT) - 1); printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n", smp_processor_id(), md->phys_addr, md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT), vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);#endif return __va_efi(md->phys_addr); } printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n", __FUNCTION__); return NULL;}#ifdef XENstatic void *pal_vaddr = 0;void *efi_get_pal_addr(void){ if (!pal_vaddr) pal_vaddr = __efi_get_pal_addr(); return pal_vaddr;}#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -