⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 memset.s

📁 xen虚拟机源代码安装包
💻 S
字号:
/* Optimized version of the standard memset() function.   Copyright (c) 2002 Hewlett-Packard Co/CERN	Sverre Jarp <Sverre.Jarp@cern.ch>   Return: dest   Inputs:        in0:    dest        in1:    value        in2:    count   The algorithm is fairly straightforward: set byte by byte until we   we get to a 16B-aligned address, then loop on 128 B chunks using an   early store as prefetching, then loop on 32B chucks, then clear remaining   words, finally clear remaining bytes.   Since a stf.spill f0 can store 16B in one go, we use this instruction   to get peak speed when value = 0.  */#include <asm/asmmacro.h>#undef ret#define dest		in0#define value		in1#define	cnt		in2#define tmp		r31#define save_lc		r30#define ptr0		r29#define ptr1		r28#define ptr2		r27#define ptr3		r26#define ptr9 		r24#define	loopcnt		r23#define linecnt		r22#define bytecnt		r21#define fvalue		f6// This routine uses only scratch predicate registers (p6 - p15)#define p_scr		p6			// default register for same-cycle branches#define p_nz		p7#define p_zr		p8#define p_unalgn	p9#define p_y		p11#define p_n		p12#define p_yy		p13#define p_nn		p14#define MIN1		15#define MIN1P1HALF	8#define LINE_SIZE	128#define LSIZE_SH        7			// shift amount#define PREF_AHEAD	8GLOBAL_ENTRY(memset){ .mmi	.prologue	alloc	tmp = ar.pfs, 3, 0, 0, 0	lfetch.nt1 [dest]			//	.save   ar.lc, save_lc	mov.i	save_lc = ar.lc	.body} { .mmi	mov	ret0 = dest			// return value	cmp.ne	p_nz, p_zr = value, r0		// use stf.spill if value is zero	cmp.eq	p_scr, p0 = cnt, r0;; }{ .mmi	and	ptr2 = -(MIN1+1), dest		// aligned address	and	tmp = MIN1, dest		// prepare to check for correct alignment	tbit.nz p_y, p_n = dest, 0		// Do we have an odd address? (M_B_U)} { .mib	mov	ptr1 = dest	mux1	value = value, @brcst		// create 8 identical bytes in word(p_scr)	br.ret.dpnt.many rp			// return immediately if count = 0;; }{ .mib	cmp.ne	p_unalgn, p0 = tmp, r0		//} { .mib	sub	bytecnt = (MIN1+1), tmp		// NB: # of bytes to move is 1 higher than loopcnt	cmp.gt	p_scr, p0 = 16, cnt		// is it a minimalistic task?(p_scr)	br.cond.dptk.many .move_bytes_unaligned	// go move just a few (M_B_U);; }{ .mmi(p_unalgn) add	ptr1 = (MIN1+1), ptr2		// after alignment(p_unalgn) add	ptr2 = MIN1P1HALF, ptr2		// after alignment(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 3	// should we do a st8 ?;; }{ .mib(p_y)	add	cnt = -8, cnt			//(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 2	// should we do a st4 ?} { .mib(p_y)	st8	[ptr2] = value,-4		//(p_n)	add	ptr2 = 4, ptr2			//;; }{ .mib(p_yy)	add	cnt = -4, cnt			//(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 1	// should we do a st2 ?} { .mib(p_yy)	st4	[ptr2] = value,-2		//(p_nn)	add	ptr2 = 2, ptr2			//;; }{ .mmi	mov	tmp = LINE_SIZE+1		// for compare(p_y)	add	cnt = -2, cnt			//(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 0	// should we do a st1 ?} { .mmi	setf.sig fvalue=value			// transfer value to FLP side(p_y)	st2	[ptr2] = value,-1		//(p_n)	add	ptr2 = 1, ptr2			//;; }{ .mmi(p_yy)	st1	[ptr2] = value 			//  	cmp.gt	p_scr, p0 = tmp, cnt		// is it a minimalistic task?} { .mbb(p_yy)	add	cnt = -1, cnt			//(p_scr)	br.cond.dpnt.many .fraction_of_line	// go move just a few;; }{ .mib	nop.m 0	shr.u	linecnt = cnt, LSIZE_SH(p_zr)	br.cond.dptk.many .l1b			// Jump to use stf.spill;; }	TEXT_ALIGN(32) // --------------------- //  L1A: store ahead into cache lines; fill later{ .mmi	and	tmp = -(LINE_SIZE), cnt		// compute end of range	mov	ptr9 = ptr1			// used for prefetching	and	cnt = (LINE_SIZE-1), cnt	// remainder} { .mmi	mov	loopcnt = PREF_AHEAD-1		// default prefetch loop	cmp.gt	p_scr, p0 = PREF_AHEAD, linecnt	// check against actual value;; }{ .mmi(p_scr)	add	loopcnt = -1, linecnt		//	add	ptr2 = 8, ptr1			// start of stores (beyond prefetch stores)	add	ptr1 = tmp, ptr1		// first address beyond total range;; }{ .mmi	add	tmp = -1, linecnt		// next loop count	mov.i	ar.lc = loopcnt			//;; }.pref_l1a:{ .mib	stf8 [ptr9] = fvalue, 128		// Do stores one cache line apart	nop.i	0	br.cloop.dptk.few .pref_l1a;; }{ .mmi	add	ptr0 = 16, ptr2			// Two stores in parallel	mov.i	ar.lc = tmp			//;; }.l1ax: { .mmi	stf8 [ptr2] = fvalue, 8	stf8 [ptr0] = fvalue, 8 ;; } { .mmi	stf8 [ptr2] = fvalue, 24	stf8 [ptr0] = fvalue, 24 ;; } { .mmi	stf8 [ptr2] = fvalue, 8	stf8 [ptr0] = fvalue, 8 ;; } { .mmi	stf8 [ptr2] = fvalue, 24	stf8 [ptr0] = fvalue, 24 ;; } { .mmi	stf8 [ptr2] = fvalue, 8	stf8 [ptr0] = fvalue, 8 ;; } { .mmi	stf8 [ptr2] = fvalue, 24	stf8 [ptr0] = fvalue, 24 ;; } { .mmi	stf8 [ptr2] = fvalue, 8	stf8 [ptr0] = fvalue, 32 	cmp.lt	p_scr, p0 = ptr9, ptr1		// do we need more prefetching? ;; }{ .mmb	stf8 [ptr2] = fvalue, 24(p_scr)	stf8 [ptr9] = fvalue, 128	br.cloop.dptk.few .l1ax;; }{ .mbb	cmp.le  p_scr, p0 = 8, cnt		// just a few bytes left ?(p_scr) br.cond.dpnt.many  .fraction_of_line	// Branch no. 2	br.cond.dpnt.many  .move_bytes_from_alignment	// Branch no. 3;; }	TEXT_ALIGN(32).l1b:	// ------------------------------------ //  L1B: store ahead into cache lines; fill later{ .mmi	and	tmp = -(LINE_SIZE), cnt		// compute end of range	mov	ptr9 = ptr1			// used for prefetching	and	cnt = (LINE_SIZE-1), cnt	// remainder} { .mmi	mov	loopcnt = PREF_AHEAD-1		// default prefetch loop	cmp.gt	p_scr, p0 = PREF_AHEAD, linecnt	// check against actual value;; }{ .mmi(p_scr)	add	loopcnt = -1, linecnt	add	ptr2 = 16, ptr1			// start of stores (beyond prefetch stores)	add	ptr1 = tmp, ptr1		// first address beyond total range;; }{ .mmi	add	tmp = -1, linecnt		// next loop count	mov.i	ar.lc = loopcnt;; }.pref_l1b:{ .mib	stf.spill [ptr9] = f0, 128		// Do stores one cache line apart	nop.i   0	br.cloop.dptk.few .pref_l1b;; }{ .mmi	add	ptr0 = 16, ptr2			// Two stores in parallel	mov.i	ar.lc = tmp;; }.l1bx: { .mmi	stf.spill [ptr2] = f0, 32	stf.spill [ptr0] = f0, 32 ;; } { .mmi	stf.spill [ptr2] = f0, 32	stf.spill [ptr0] = f0, 32 ;; } { .mmi	stf.spill [ptr2] = f0, 32	stf.spill [ptr0] = f0, 64 	cmp.lt	p_scr, p0 = ptr9, ptr1		// do we need more prefetching? ;; }{ .mmb	stf.spill [ptr2] = f0, 32(p_scr)	stf.spill [ptr9] = f0, 128	br.cloop.dptk.few .l1bx;; }{ .mib	cmp.gt  p_scr, p0 = 8, cnt		// just a few bytes left ?(p_scr)	br.cond.dpnt.many  .move_bytes_from_alignment	//;; }.fraction_of_line:{ .mib	add	ptr2 = 16, ptr1	shr.u	loopcnt = cnt, 5   		// loopcnt = cnt / 32;; }{ .mib	cmp.eq	p_scr, p0 = loopcnt, r0	add	loopcnt = -1, loopcnt(p_scr)	br.cond.dpnt.many .store_words;; }{ .mib	and	cnt = 0x1f, cnt			// compute the remaining cnt	mov.i   ar.lc = loopcnt;; }	TEXT_ALIGN(32).l2:	// ------------------------------------ //  L2A:  store 32B in 2 cycles{ .mmb	stf8	[ptr1] = fvalue, 8	stf8	[ptr2] = fvalue, 8;; } { .mmb	stf8	[ptr1] = fvalue, 24	stf8	[ptr2] = fvalue, 24	br.cloop.dptk.many .l2;; }.store_words:{ .mib	cmp.gt	p_scr, p0 = 8, cnt		// just a few bytes left ?(p_scr)	br.cond.dpnt.many .move_bytes_from_alignment	// Branch;; }{ .mmi	stf8	[ptr1] = fvalue, 8		// store	cmp.le	p_y, p_n = 16, cnt	add	cnt = -8, cnt			// subtract;; }{ .mmi(p_y)	stf8	[ptr1] = fvalue, 8		// store(p_y)	cmp.le.unc p_yy, p_nn = 16, cnt(p_y)	add	cnt = -8, cnt			// subtract;; }{ .mmi						// store(p_yy)	stf8	[ptr1] = fvalue, 8(p_yy)	add	cnt = -8, cnt			// subtract;; }.move_bytes_from_alignment:{ .mib	cmp.eq	p_scr, p0 = cnt, r0	tbit.nz.unc p_y, p0 = cnt, 2		// should we terminate with a st4 ?(p_scr)	br.cond.dpnt.few .restore_and_exit;; }{ .mib(p_y)	st4	[ptr1] = value,4	tbit.nz.unc p_yy, p0 = cnt, 1		// should we terminate with a st2 ?;; }{ .mib(p_yy)	st2	[ptr1] = value,2	tbit.nz.unc p_y, p0 = cnt, 0		// should we terminate with a st1 ?;; }{ .mib(p_y)	st1	[ptr1] = value;; }.restore_and_exit:{ .mib	nop.m	0	mov.i	ar.lc = save_lc	br.ret.sptk.many rp;; }.move_bytes_unaligned:{ .mmi       .pred.rel "mutex",p_y, p_n       .pred.rel "mutex",p_yy, p_nn(p_n)	cmp.le  p_yy, p_nn = 4, cnt(p_y)	cmp.le  p_yy, p_nn = 5, cnt(p_n)	add	ptr2 = 2, ptr1} { .mmi(p_y)	add	ptr2 = 3, ptr1(p_y)	st1	[ptr1] = value, 1		// fill 1 (odd-aligned) byte [15, 14 (or less) left](p_y)	add	cnt = -1, cnt;; }{ .mmi(p_yy)	cmp.le.unc p_y, p0 = 8, cnt	add	ptr3 = ptr1, cnt		// prepare last store	mov.i	ar.lc = save_lc} { .mmi(p_yy)	st2	[ptr1] = value, 4		// fill 2 (aligned) bytes(p_yy)	st2	[ptr2] = value, 4		// fill 2 (aligned) bytes [11, 10 (o less) left](p_yy)	add	cnt = -4, cnt;; }{ .mmi(p_y)	cmp.le.unc p_yy, p0 = 8, cnt	add	ptr3 = -1, ptr3			// last store	tbit.nz p_scr, p0 = cnt, 1		// will there be a st2 at the end ?} { .mmi(p_y)	st2	[ptr1] = value, 4		// fill 2 (aligned) bytes(p_y)	st2	[ptr2] = value, 4		// fill 2 (aligned) bytes [7, 6 (or less) left](p_y)	add	cnt = -4, cnt;; }{ .mmi(p_yy)	st2	[ptr1] = value, 4		// fill 2 (aligned) bytes(p_yy)	st2	[ptr2] = value, 4		// fill 2 (aligned) bytes [3, 2 (or less) left]	tbit.nz p_y, p0 = cnt, 0		// will there be a st1 at the end ?} { .mmi(p_yy)	add	cnt = -4, cnt;; }{ .mmb(p_scr)	st2	[ptr1] = value			// fill 2 (aligned) bytes(p_y)	st1	[ptr3] = value			// fill last byte (using ptr3)	br.ret.sptk.many rp}END(memset)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -