📄 smpboot.c
字号:
/* * x86 SMP booting functions * * (c) 1995 Alan Cox, Building #3 <alan@redhat.com> * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com> * * Much of the core SMP work is based on previous work by Thomas Radke, to * whom a great many thanks are extended. * * Thanks to Intel for making available several different Pentium, * Pentium Pro and Pentium-II/Xeon MP machines. * Original development of Linux SMP code supported by Caldera. * * This code is released under the GNU General Public License version 2 or * later. * * Fixes * Felix Koop : NR_CPUS used properly * Jose Renau : Handle single CPU case. * Alan Cox : By repeated request 8) - Total BogoMIPS report. * Greg Wright : Fix for kernel stacks panic. * Erich Boleyn : MP v1.4 and additional changes. * Matthias Sattler : Changes for 2.1 kernel map. * Michel Lespinasse : Changes for 2.1 kernel map. * Michael Chastain : Change trampoline.S to gnu as. * Alan Cox : Dumb bug: 'B' step PPro's are fine * Ingo Molnar : Added APIC timers, based on code * from Jose Renau * Ingo Molnar : various cleanups and rewrites * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug. * Maciej W. Rozycki : Bits for genuine 82489DX APICs * Martin J. Bligh : Added support for multi-quad systems * Dave Jones : Report invalid combinations of Athlon CPUs.* Rusty Russell : Hacked into shape for new "hotplug" boot process. */#include <xen/config.h>#include <xen/init.h>#include <xen/kernel.h>#include <xen/mm.h>#include <xen/domain.h>#include <xen/sched.h>#include <xen/irq.h>#include <xen/delay.h>#include <xen/softirq.h>#include <xen/serial.h>#include <xen/numa.h>#include <asm/current.h>#include <asm/mc146818rtc.h>#include <asm/desc.h>#include <asm/div64.h>#include <asm/flushtlb.h>#include <asm/msr.h>#include <asm/mtrr.h>#include <mach_apic.h>#include <mach_wakecpu.h>#include <smpboot_hooks.h>#include <xen/stop_machine.h>#define set_kernel_exec(x, y) (0)#define setup_trampoline() (bootsym_phys(trampoline_realmode_entry))/* Set if we find a B stepping CPU */static int __devinitdata smp_b_stepping;/* Number of siblings per CPU package */int smp_num_siblings = 1;#ifdef CONFIG_X86_HTEXPORT_SYMBOL(smp_num_siblings);#endif/* Package ID of each logical CPU */int phys_proc_id[NR_CPUS] __read_mostly = {[0 ... NR_CPUS-1] = BAD_APICID};/* Core ID of each logical CPU */int cpu_core_id[NR_CPUS] __read_mostly = {[0 ... NR_CPUS-1] = BAD_APICID};/* representing HT siblings of each logical CPU */cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;EXPORT_SYMBOL(cpu_sibling_map);/* representing HT and core siblings of each logical CPU */cpumask_t cpu_core_map[NR_CPUS] __read_mostly;EXPORT_SYMBOL(cpu_core_map);/* bitmap of online cpus */cpumask_t cpu_online_map __read_mostly;EXPORT_SYMBOL(cpu_online_map);cpumask_t cpu_callin_map;cpumask_t cpu_callout_map;EXPORT_SYMBOL(cpu_callout_map);cpumask_t cpu_possible_map;EXPORT_SYMBOL(cpu_possible_map);static cpumask_t smp_commenced_mask;/* TSC's upper 32 bits can't be written in eariler CPU (before prescott), there * is no way to resync one AP against BP. TBD: for prescott and above, we * should use IA64's algorithm */static int __devinitdata tsc_sync_disabled;/* Per CPU bogomips and other parameters */struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;EXPORT_SYMBOL(cpu_data);u32 x86_cpu_to_apicid[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = -1U };EXPORT_SYMBOL(x86_cpu_to_apicid);static void map_cpu_to_logical_apicid(void);/* State of each CPU. */DEFINE_PER_CPU(int, cpu_state) = { 0 };static void *stack_base[NR_CPUS] __cacheline_aligned;static DEFINE_SPINLOCK(cpu_add_remove_lock);/* * The bootstrap kernel entry code has set these up. Save them for * a given CPU */static void __devinit smp_store_cpu_info(int id){ struct cpuinfo_x86 *c = cpu_data + id; *c = boot_cpu_data; if (id!=0) identify_cpu(c); /* * Mask B, Pentium, but not Pentium MMX */ if (c->x86_vendor == X86_VENDOR_INTEL && c->x86 == 5 && c->x86_mask >= 1 && c->x86_mask <= 4 && c->x86_model <= 3) /* * Remember we have B step Pentia with bugs */ smp_b_stepping = 1; /* * Certain Athlons might work (for various values of 'work') in SMP * but they are not certified as MP capable. */ if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) { /* Athlon 660/661 is valid. */ if ((c->x86_model==6) && ((c->x86_mask==0) || (c->x86_mask==1))) goto valid_k7; /* Duron 670 is valid */ if ((c->x86_model==7) && (c->x86_mask==0)) goto valid_k7; /* * Athlon 662, Duron 671, and Athlon >model 7 have capability bit. * It's worth noting that the A5 stepping (662) of some Athlon XP's * have the MP bit set. * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for more. */ if (((c->x86_model==6) && (c->x86_mask>=2)) || ((c->x86_model==7) && (c->x86_mask>=1)) || (c->x86_model> 7)) if (cpu_has_mp) goto valid_k7; /* If we get here, it's not a certified SMP capable AMD system. */ add_taint(TAINT_UNSAFE_SMP); }valid_k7: ;}/* * TSC synchronization. * * We first check whether all CPUs have their TSC's synchronized, * then we print a warning if not, and always resync. */static atomic_t tsc_start_flag = ATOMIC_INIT(0);static atomic_t tsc_count_start = ATOMIC_INIT(0);static atomic_t tsc_count_stop = ATOMIC_INIT(0);static unsigned long long tsc_values[NR_CPUS];#define NR_LOOPS 5static void __init synchronize_tsc_bp (void){ int i; unsigned long long t0; unsigned long long sum, avg; long long delta; unsigned int one_usec; int buggy = 0; printk("checking TSC synchronization across %u CPUs: ", num_booting_cpus()); /* convert from kcyc/sec to cyc/usec */ one_usec = cpu_khz / 1000; atomic_set(&tsc_start_flag, 1); wmb(); /* * We loop a few times to get a primed instruction cache, * then the last pass is more or less synchronized and * the BP and APs set their cycle counters to zero all at * once. This reduces the chance of having random offsets * between the processors, and guarantees that the maximum * delay between the cycle counters is never bigger than * the latency of information-passing (cachelines) between * two CPUs. */ for (i = 0; i < NR_LOOPS; i++) { /* * all APs synchronize but they loop on '== num_cpus' */ while (atomic_read(&tsc_count_start) != num_booting_cpus()-1) mb(); atomic_set(&tsc_count_stop, 0); wmb(); /* * this lets the APs save their current TSC: */ atomic_inc(&tsc_count_start); rdtscll(tsc_values[smp_processor_id()]); /* * We clear the TSC in the last loop: */ if (i == NR_LOOPS-1) write_tsc(0, 0); /* * Wait for all APs to leave the synchronization point: */ while (atomic_read(&tsc_count_stop) != num_booting_cpus()-1) mb(); atomic_set(&tsc_count_start, 0); wmb(); atomic_inc(&tsc_count_stop); } sum = 0; for (i = 0; i < NR_CPUS; i++) { if (cpu_isset(i, cpu_callout_map)) { t0 = tsc_values[i]; sum += t0; } } avg = sum; do_div(avg, num_booting_cpus()); sum = 0; for (i = 0; i < NR_CPUS; i++) { if (!cpu_isset(i, cpu_callout_map)) continue; delta = tsc_values[i] - avg; if (delta < 0) delta = -delta; /* * We report bigger than 2 microseconds clock differences. */ if (delta > 2*one_usec) { long realdelta; if (!buggy) { buggy = 1; printk("\n"); } realdelta = delta; do_div(realdelta, one_usec); if (tsc_values[i] < avg) realdelta = -realdelta; printk("CPU#%d had %ld usecs TSC skew, fixed it up.\n", i, realdelta); } sum += delta; } if (!buggy) printk("passed.\n");}static void __init synchronize_tsc_ap (void){ int i; /* * Not every cpu is online at the time * this gets called, so we first wait for the BP to * finish SMP initialization: */ while (!atomic_read(&tsc_start_flag)) mb(); for (i = 0; i < NR_LOOPS; i++) { atomic_inc(&tsc_count_start); while (atomic_read(&tsc_count_start) != num_booting_cpus()) mb(); rdtscll(tsc_values[smp_processor_id()]); if (i == NR_LOOPS-1) write_tsc(0, 0); atomic_inc(&tsc_count_stop); while (atomic_read(&tsc_count_stop) != num_booting_cpus()) mb(); }}#undef NR_LOOPSextern void calibrate_delay(void);static atomic_t init_deasserted;void __devinit smp_callin(void){ int cpuid, phys_id, i; /* * If waken up by an INIT in an 82489DX configuration * we may get here before an INIT-deassert IPI reaches * our local APIC. We have to wait for the IPI or we'll * lock up on an APIC access. */ wait_for_init_deassert(&init_deasserted); if ( x2apic_enabled ) enable_x2apic(); /* * (This works even if the APIC is not enabled.) */ phys_id = get_apic_id(); cpuid = smp_processor_id(); if (cpu_isset(cpuid, cpu_callin_map)) { printk("huh, phys CPU#%d, CPU#%d already present??\n", phys_id, cpuid); BUG(); } Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id); /* * STARTUP IPIs are fragile beasts as they might sometimes * trigger some glue motherboard logic. Complete APIC bus * silence for 1 second, this overestimates the time the * boot CPU is spending to send the up to 2 STARTUP IPIs * by a factor of two. This should be enough. */ /* * Waiting 2s total for startup */ for (i = 0; i < 200; i++) { /* * Has the boot CPU finished it's STARTUP sequence? */ if (cpu_isset(cpuid, cpu_callout_map)) break; rep_nop(); mdelay(10); } if (!cpu_isset(cpuid, cpu_callout_map)) { printk("BUG: CPU%d started up but did not get a callout!\n", cpuid); BUG(); } /* * the boot CPU has finished the init stage and is spinning * on callin_map until we finish. We are free to set up this * CPU, first the APIC. (this is probably redundant on most * boards) */ Dprintk("CALLIN, before setup_local_APIC().\n"); smp_callin_clear_local_apic(); setup_local_APIC(); map_cpu_to_logical_apicid();#if 0 /* * Get our bogomips. */ calibrate_delay(); Dprintk("Stack at about %p\n",&cpuid);#endif /* * Save our processor parameters */ smp_store_cpu_info(cpuid); disable_APIC_timer(); /* * Allow the master to continue. */ cpu_set(cpuid, cpu_callin_map); /* * Synchronize the TSC with the BP */ if (cpu_has_tsc && cpu_khz && !tsc_sync_disabled) { synchronize_tsc_ap(); /* No sync for same reason as above */ calibrate_tsc_ap(); }}static int cpucount, booting_cpu;/* representing cpus for which sibling maps can be computed */static cpumask_t cpu_sibling_setup_map;static inline voidset_cpu_sibling_map(int cpu){ int i; struct cpuinfo_x86 *c = cpu_data; cpu_set(cpu, cpu_sibling_setup_map); if (smp_num_siblings > 1) { for_each_cpu_mask(i, cpu_sibling_setup_map) { if (phys_proc_id[cpu] == phys_proc_id[i] && cpu_core_id[cpu] == cpu_core_id[i]) { cpu_set(i, cpu_sibling_map[cpu]); cpu_set(cpu, cpu_sibling_map[i]); cpu_set(i, cpu_core_map[cpu]); cpu_set(cpu, cpu_core_map[i]); } } } else { cpu_set(cpu, cpu_sibling_map[cpu]); } if (current_cpu_data.x86_max_cores == 1) { cpu_core_map[cpu] = cpu_sibling_map[cpu]; c[cpu].booted_cores = 1; return; } for_each_cpu_mask(i, cpu_sibling_setup_map) { if (phys_proc_id[cpu] == phys_proc_id[i]) { cpu_set(i, cpu_core_map[cpu]); cpu_set(cpu, cpu_core_map[i]); /* * Does this new cpu bringup a new core? */ if (cpus_weight(cpu_sibling_map[cpu]) == 1) { /* * for each core in package, increment * the booted_cores for this new cpu */ if (first_cpu(cpu_sibling_map[i]) == i) c[cpu].booted_cores++; /* * increment the core count for all * the other cpus in this package */ if (i != cpu) c[i].booted_cores++; } else if (i != cpu && !c[cpu].booted_cores) c[cpu].booted_cores = c[i].booted_cores; } }}static void construct_percpu_idt(unsigned int cpu){ unsigned char idt_load[10]; /* If IDT table exists since last hotplug, reuse it */ if (!idt_tables[cpu]) { idt_tables[cpu] = xmalloc_array(idt_entry_t, IDT_ENTRIES); memcpy(idt_tables[cpu], idt_table, IDT_ENTRIES*sizeof(idt_entry_t)); } *(unsigned short *)(&idt_load[0]) = (IDT_ENTRIES*sizeof(idt_entry_t))-1; *(unsigned long *)(&idt_load[2]) = (unsigned long)idt_tables[cpu]; __asm__ __volatile__ ( "lidt %0" : "=m" (idt_load) );}/* * Activate a secondary processor. */void __devinit start_secondary(void *unused){ /* * Dont put anything before smp_callin(), SMP * booting is too fragile that we want to limit the * things done here to the most necessary things. */ unsigned int cpu = booting_cpu;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -