📄 mtrr.c
字号:
/* * mtrr.c: MTRR/PAT virtualization * * Copyright (c) 2007, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 Temple * Place - Suite 330, Boston, MA 02111-1307 USA. */#include <public/hvm/e820.h>#include <xen/types.h>#include <asm/e820.h>#include <asm/paging.h>#include <asm/p2m.h>#include <xen/domain_page.h>#include <asm/mtrr.h>#include <asm/hvm/support.h>#include <asm/hvm/cacheattr.h>extern struct mtrr_state mtrr_state;static uint64_t phys_base_msr_mask;static uint64_t phys_mask_msr_mask;static uint32_t size_or_mask;static uint32_t size_and_mask;/* Get page attribute fields (PAn) from PAT MSR. */#define pat_cr_2_paf(pat_cr,n) ((((uint64_t)pat_cr) >> ((n)<<3)) & 0xff)/* PAT entry to PTE flags (PAT, PCD, PWT bits). */static uint8_t pat_entry_2_pte_flags[8] = { 0, _PAGE_PWT, _PAGE_PCD, _PAGE_PCD | _PAGE_PWT, _PAGE_PAT, _PAGE_PAT | _PAGE_PWT, _PAGE_PAT | _PAGE_PCD, _PAGE_PAT | _PAGE_PCD | _PAGE_PWT };/* Effective mm type lookup table, according to MTRR and PAT. */static uint8_t mm_type_tbl[MTRR_NUM_TYPES][PAT_TYPE_NUMS] = {/********PAT(UC,WC,RS,RS,WT,WP,WB,UC-)*//* RS means reserved type(2,3), and type is hardcoded here */ /*MTRR(UC):(UC,WC,RS,RS,UC,UC,UC,UC)*/ {0, 1, 2, 2, 0, 0, 0, 0}, /*MTRR(WC):(UC,WC,RS,RS,UC,UC,WC,WC)*/ {0, 1, 2, 2, 0, 0, 1, 1}, /*MTRR(RS):(RS,RS,RS,RS,RS,RS,RS,RS)*/ {2, 2, 2, 2, 2, 2, 2, 2}, /*MTRR(RS):(RS,RS,RS,RS,RS,RS,RS,RS)*/ {2, 2, 2, 2, 2, 2, 2, 2}, /*MTRR(WT):(UC,WC,RS,RS,WT,WP,WT,UC)*/ {0, 1, 2, 2, 4, 5, 4, 0}, /*MTRR(WP):(UC,WC,RS,RS,WT,WP,WP,WC)*/ {0, 1, 2, 2, 4, 5, 5, 1}, /*MTRR(WB):(UC,WC,RS,RS,WT,WP,WB,UC)*/ {0, 1, 2, 2, 4, 5, 6, 0}};/* * Reverse lookup table, to find a pat type according to MTRR and effective * memory type. This table is dynamically generated. */static uint8_t mtrr_epat_tbl[MTRR_NUM_TYPES][MEMORY_NUM_TYPES];/* Lookup table for PAT entry of a given PAT value in host PAT. */static uint8_t pat_entry_tbl[PAT_TYPE_NUMS];static void get_mtrr_range(uint64_t base_msr, uint64_t mask_msr, uint64_t *base, uint64_t *end){ uint32_t mask_lo = (uint32_t)mask_msr; uint32_t mask_hi = (uint32_t)(mask_msr >> 32); uint32_t base_lo = (uint32_t)base_msr; uint32_t base_hi = (uint32_t)(base_msr >> 32); uint32_t size; if ( (mask_lo & 0x800) == 0 ) { /* Invalid (i.e. free) range */ *base = 0; *end = 0; return; } /* Work out the shifted address mask. */ mask_lo = (size_or_mask | (mask_hi << (32 - PAGE_SHIFT)) | (mask_lo >> PAGE_SHIFT)); /* This works correctly if size is a power of two (a contiguous range). */ size = -mask_lo; *base = base_hi << (32 - PAGE_SHIFT) | base_lo >> PAGE_SHIFT; *end = *base + size - 1;}bool_t is_var_mtrr_overlapped(struct mtrr_state *m){ int32_t seg, i; uint64_t phys_base, phys_mask, phys_base_pre, phys_mask_pre; uint64_t base_pre, end_pre, base, end; uint8_t num_var_ranges = (uint8_t)m->mtrr_cap; for ( i = 0; i < num_var_ranges; i++ ) { phys_base_pre = ((uint64_t*)m->var_ranges)[i*2]; phys_mask_pre = ((uint64_t*)m->var_ranges)[i*2 + 1]; get_mtrr_range(phys_base_pre, phys_mask_pre, &base_pre, &end_pre); for ( seg = i + 1; seg < num_var_ranges; seg ++ ) { phys_base = ((uint64_t*)m->var_ranges)[seg*2]; phys_mask = ((uint64_t*)m->var_ranges)[seg*2 + 1]; get_mtrr_range(phys_base, phys_mask, &base, &end); if ( ((base_pre != end_pre) && (base != end)) || ((base >= base_pre) && (base <= end_pre)) || ((end >= base_pre) && (end <= end_pre)) || ((base_pre >= base) && (base_pre <= end)) || ((end_pre >= base) && (end_pre <= end)) ) { /* MTRR is overlapped. */ return 1; } } } return 0;}#define MTRR_PHYSMASK_VALID_BIT 11#define MTRR_PHYSMASK_SHIFT 12#define MTRR_PHYSBASE_TYPE_MASK 0xff /* lowest 8 bits */#define MTRR_PHYSBASE_SHIFT 12#define MTRR_VCNT 8#define MTRRphysBase_MSR(reg) (0x200 + 2 * (reg))#define MTRRphysMask_MSR(reg) (0x200 + 2 * (reg) + 1)bool_t mtrr_var_range_msr_set(struct mtrr_state *m, uint32_t msr, uint64_t msr_content);bool_t mtrr_fix_range_msr_set(struct mtrr_state *m, uint32_t row, uint64_t msr_content);static int hvm_mtrr_pat_init(void){ extern uint64_t host_pat; unsigned int i, j, phys_addr; memset(&mtrr_epat_tbl, INVALID_MEM_TYPE, sizeof(mtrr_epat_tbl)); for ( i = 0; i < MTRR_NUM_TYPES; i++ ) { for ( j = 0; j < PAT_TYPE_NUMS; j++ ) { int32_t tmp = mm_type_tbl[i][j]; if ( (tmp >= 0) && (tmp < MEMORY_NUM_TYPES) ) mtrr_epat_tbl[i][tmp] = j; } } memset(&pat_entry_tbl, INVALID_MEM_TYPE, PAT_TYPE_NUMS * sizeof(pat_entry_tbl[0])); for ( i = 0; i < PAT_TYPE_NUMS; i++ ) { for ( j = 0; j < PAT_TYPE_NUMS; j++ ) { if ( pat_cr_2_paf(host_pat, j) == i ) { pat_entry_tbl[i] = j; break; } } } phys_addr = 36; if ( cpuid_eax(0x80000000) >= 0x80000008 ) phys_addr = (uint8_t)cpuid_eax(0x80000008); phys_base_msr_mask = ~((((uint64_t)1) << phys_addr) - 1) | 0xf00UL; phys_mask_msr_mask = ~((((uint64_t)1) << phys_addr) - 1) | 0x7ffUL; size_or_mask = ~((1 << (phys_addr - PAGE_SHIFT)) - 1); size_and_mask = ~size_or_mask & 0xfff00000; return 0;}__initcall(hvm_mtrr_pat_init);uint8_t pat_type_2_pte_flags(uint8_t pat_type){ int32_t pat_entry = pat_entry_tbl[pat_type]; /* INVALID_MEM_TYPE, means doesn't find the pat_entry in host pat for * a given pat_type. If host pat covers all the pat types, * it can't happen. */ if ( likely(pat_entry != INVALID_MEM_TYPE) ) return pat_entry_2_pte_flags[pat_entry]; return pat_entry_2_pte_flags[pat_entry_tbl[PAT_TYPE_UNCACHABLE]];}int hvm_vcpu_cacheattr_init(struct vcpu *v){ struct mtrr_state *m = &v->arch.hvm_vcpu.mtrr; memset(m, 0, sizeof(*m)); m->var_ranges = xmalloc_array(struct mtrr_var_range, MTRR_VCNT); if ( m->var_ranges == NULL ) return -ENOMEM; memset(m->var_ranges, 0, MTRR_VCNT * sizeof(struct mtrr_var_range)); m->mtrr_cap = (1u << 10) | (1u << 8) | MTRR_VCNT; v->arch.hvm_vcpu.pat_cr = ((uint64_t)PAT_TYPE_WRBACK) | /* PAT0: WB */ ((uint64_t)PAT_TYPE_WRTHROUGH << 8) | /* PAT1: WT */ ((uint64_t)PAT_TYPE_UC_MINUS << 16) | /* PAT2: UC- */ ((uint64_t)PAT_TYPE_UNCACHABLE << 24) | /* PAT3: UC */ ((uint64_t)PAT_TYPE_WRBACK << 32) | /* PAT4: WB */ ((uint64_t)PAT_TYPE_WRTHROUGH << 40) | /* PAT5: WT */ ((uint64_t)PAT_TYPE_UC_MINUS << 48) | /* PAT6: UC- */ ((uint64_t)PAT_TYPE_UNCACHABLE << 56); /* PAT7: UC */ return 0;}void hvm_vcpu_cacheattr_destroy(struct vcpu *v){ xfree(v->arch.hvm_vcpu.mtrr.var_ranges);}/* * Get MTRR memory type for physical address pa. */static uint8_t get_mtrr_type(struct mtrr_state *m, paddr_t pa){ int32_t addr, seg, index; uint8_t overlap_mtrr = 0; uint8_t overlap_mtrr_pos = 0; uint64_t phys_base; uint64_t phys_mask; uint8_t num_var_ranges = m->mtrr_cap & 0xff; if ( unlikely(!(m->enabled & 0x2)) ) return MTRR_TYPE_UNCACHABLE; if ( (pa < 0x100000) && (m->enabled & 1) ) { /* Fixed range MTRR takes effective */ addr = (uint32_t) pa; if ( addr < 0x80000 ) { seg = (addr >> 16); return m->fixed_ranges[seg]; } else if ( addr < 0xc0000 ) { seg = (addr - 0x80000) >> 14; index = (seg >> 3) + 1; seg &= 7; /* select 0-7 segments */ return m->fixed_ranges[index*8 + seg]; } else { /* 0xC0000 --- 0x100000 */ seg = (addr - 0xc0000) >> 12; index = (seg >> 3) + 3; seg &= 7; /* select 0-7 segments */ return m->fixed_ranges[index*8 + seg]; } } /* Match with variable MTRRs. */ for ( seg = 0; seg < num_var_ranges; seg++ ) { phys_base = ((uint64_t*)m->var_ranges)[seg*2]; phys_mask = ((uint64_t*)m->var_ranges)[seg*2 + 1]; if ( phys_mask & (1 << MTRR_PHYSMASK_VALID_BIT) ) { if ( ((uint64_t) pa & phys_mask) >> MTRR_PHYSMASK_SHIFT == (phys_base & phys_mask) >> MTRR_PHYSMASK_SHIFT ) { if ( unlikely(m->overlapped) ) { overlap_mtrr |= 1 << (phys_base & MTRR_PHYSBASE_TYPE_MASK); overlap_mtrr_pos = phys_base & MTRR_PHYSBASE_TYPE_MASK; } else { /* If no overlap, return the found one */ return (phys_base & MTRR_PHYSBASE_TYPE_MASK); } } } } /* Overlapped or not found. */ if ( unlikely(overlap_mtrr == 0) ) return m->def_type; if ( likely(!(overlap_mtrr & ~( ((uint8_t)1) << overlap_mtrr_pos ))) ) /* Covers both one variable memory range matches and * two or more identical match. */ return overlap_mtrr_pos; if ( overlap_mtrr & 0x1 ) /* Two or more match, one is UC. */ return MTRR_TYPE_UNCACHABLE; if ( !(overlap_mtrr & 0xaf) ) /* Two or more match, WT and WB. */ return MTRR_TYPE_WRTHROUGH; /* Behaviour is undefined, but return the last overlapped type. */ return overlap_mtrr_pos;}/* * return the memory type from PAT. * NOTE: valid only when paging is enabled. * Only 4K page PTE is supported now. */static uint8_t page_pat_type(uint64_t pat_cr, uint32_t pte_flags){ int32_t pat_entry; /* PCD/PWT -> bit 1/0 of PAT entry */ pat_entry = ( pte_flags >> 3 ) & 0x3; /* PAT bits as bit 2 of PAT entry */ if ( pte_flags & _PAGE_PAT ) pat_entry |= 4; return (uint8_t)pat_cr_2_paf(pat_cr, pat_entry);}/* * Effective memory type for leaf page. */static uint8_t effective_mm_type(struct mtrr_state *m, uint64_t pat, paddr_t gpa, uint32_t pte_flags){ uint8_t mtrr_mtype, pat_value, effective; mtrr_mtype = get_mtrr_type(m, gpa); pat_value = page_pat_type(pat, pte_flags); effective = mm_type_tbl[mtrr_mtype][pat_value];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -