📄 一维).txt
字号:
case 1
surf(i,j,Ez0);
axis([0 Nx 0 Ny -0.03 0.03]);
set(gca, 'XTick',[1 Nx/4 Nx/2 3*Nx/4 Nx],'FontSize',8);
set(gca, 'XTickLabel',[0 X/4 X/2 3*X/4 X],'FontSize',8);
xlabel('x in m');
set(gca, 'YTick',[1 Ny/4 Ny/2 3*Ny/4 Ny],'FontSize',8);
set(gca, 'YTickLabel',[0 Y/4 Y/2 3*Y/4 Y],'FontSize',8);
ylabel('y in m');
zlabel('Amplitude of Ez');
case 2
surf(i,j,Hx0);
axis([0 Nx 0 Ny -1e-4 1e-4]);
set(gca, 'XTick',[1 Nx/4 Nx/2 3*Nx/4 Nx],'FontSize',8);
set(gca, 'XTickLabel',[0 X/4 X/2 3*X/4 X],'FontSize',8);
xlabel('x in m');
set(gca, 'YTick',[1 Ny/4 Ny/2 3*Ny/4 Ny],'FontSize',8);
set(gca, 'YTickLabel',[0 Y/4 Y/2 3*Y/4 Y],'FontSize',8);
ylabel('y in m');
zlabel('Amplitude of Hx');
case 3
surf(i,j,Hy0);
axis([0 Nx 0 Ny -1e-4 1e-4]);
set(gca, 'XTick',[1 Nx/4 Nx/2 3*Nx/4 Nx],'FontSize',8);
set(gca, 'XTickLabel',[0 X/4 X/2 3*X/4 X],'FontSize',8);
xlabel('x in m');
set(gca, 'YTick',[1 Ny/4 Ny/2 3*Ny/4 Ny],'FontSize',8);
set(gca, 'YTickLabel',[0 Y/4 Y/2 3*Y/4 Y],'FontSize',8);
ylabel('y in m');
zlabel('Amplitude of Hy');
otherwise
subplot(2,2,1);
surf(i,j,Ez0);
title('Ex');
axis([0 Nx 0 Ny -0.03 0.03]);
set(gca, 'XTick',[1 Nx/4 Nx/2 3*Nx/4 Nx],'FontSize',8);
set(gca, 'XTickLabel',[0 X/4 X/2 3*X/4 X],'FontSize',8);
xlabel('x in m');
set(gca, 'YTick',[1 Ny/4 Ny/2 3*Ny/4 Ny],'FontSize',8);
set(gca, 'YTickLabel',[0 Y/4 Y/2 3*Y/4 Y],'FontSize',8);
ylabel('y in m');
zlabel('Amplitude of Ez');
subplot(2,2,2);
surf(i,j,Hx0);
title('Hx');
axis([0 Nx 0 Ny -1e-4 1e-4]);
set(gca, 'XTick',[1 Nx/4 Nx/2 3*Nx/4 Nx],'FontSize',8);
set(gca, 'XTickLabel',[0 X/4 X/2 3*X/4 X],'FontSize',8);
xlabel('x in m');
set(gca, 'YTick',[1 Ny/4 Ny/2 3*Ny/4 Ny],'FontSize',8);
set(gca, 'YTickLabel',[0 Y/4 Y/2 3*Y/4 Y],'FontSize',8);
ylabel('y in m');
zlabel('Amplitude of Hx');
subplot(2,2,3);
surf(i,j,Hy0);
title('Hy');
axis([0 Nx 0 Ny -1e-4 1e-4]);
set(gca, 'XTick',[1 Nx/4 Nx/2 3*Nx/4 Nx],'FontSize',8);
set(gca, 'XTickLabel',[0 X/4 X/2 3*X/4 X],'FontSize',8);
xlabel('x in m');
set(gca, 'YTick',[1 Ny/4 Ny/2 3*Ny/4 Ny],'FontSize',8);
set(gca, 'YTickLabel',[0 Y/4 Y/2 3*Y/4 Y],'FontSize',8);
ylabel('y in m');
zlabel('Amplitude of Hy');
end
%surf(i,j,Ez0);
%axis([0 Nx 0 Ny -0.03 0.03])
%A = rot90(Ez0);
%imagesc(A);
pause(0.005);
end
3D FDTD for hexahedral cavity with conducting walls
% Physical constants
eps0 = 8.8541878e-12; % Permittivity of vacuum
mu0 = 4e-7 * pi; % Permeability of vacuum
c0 = 299792458; % Speed of light in vacuum
% Parameter initiation
Lx = .05; Ly = .04; Lz = .03; % Cavity dimensions in meters
Nx = 25; Ny = 20; Nz = 15; % Number of cells in each direction
Cx = Nx / Lx; % Inverse cell dimensions
Cy = Ny / Ly;
Cz = Nz / Lz;
Nt = 1024; % Number of time steps
Dt = 1/(c0*norm([Cx Cy Cz])); % Time step
% Allocate field matrices
Ex = zeros(Nx , Ny+1, Nz+1);
Ey = zeros(Nx+1, Ny , Nz+1);
Ez = zeros(Nx+1, Ny+1, Nz );
Hx = zeros(Nx+1, Ny , Nz );
Hy = zeros(Nx , Ny+1, Nz );
Hz = zeros(Nx , Ny , Nz+1);
% Allocate time signals
Et = zeros(Nt,3);
% Initiate fields (near but not on the boundary)
Ex(1,2,2) = 1;
Ey(2,1,2) = 2;
Ez(2,2,1) = 3;
% Time stepping
for n = 1:Nt;
% Update H everywhere
Hx = Hx + (Dt/mu0)*(diff(Ey,1,3)*Cz - diff(Ez,1,2)*Cy);
Hy = Hy + (Dt/mu0)*(diff(Ez,1,1)*Cx - diff(Ex,1,3)*Cz);
Hz = Hz + (Dt/mu0)*(diff(Ex,1,2)*Cy - diff(Ey,1,1)*Cx);
% Update E everywhere except on boundary
Ex(:,2:Ny,2:Nz) = Ex(:,2:Ny,2:Nz) + (Dt /eps0) * ...
(diff(Hz(:,:,2:Nz),1,2)*Cy - diff(Hy(:,2:Ny,:),1,3)*Cz);
Ey(2:Nx,:,2:Nz) = Ey(2:Nx,:,2:Nz) + (Dt /eps0) * ...
(diff(Hx(2:Nx,:,:),1,3)*Cz - diff(Hz(:,:,2:Nz),1,1)*Cx);
Ez(2:Nx,2:Ny,:) = Ez(2:Nx,2:Ny,:) + (Dt /eps0) * ...
(diff(Hy(:,2:Ny,:),1,1)*Cx - diff(Hx(2:Nx,:,:),1,2)*Cy);
% Sample the electric field at chosen points
Eto(n,:) = [Ex(4,4,4) Ey(4,4,4) Ez(4,4,4)];
end
Version with for-loops for update of Ex and Hx.
% Physical constants
eps0 = 8.8541878e-12; % Permittivity of vacuum
mu0 = 4e-7 * pi; % Permeability of vacuum
c0 = 299792458; % Speed of light in vacuum
% Parameter initiation
Lx = .05; Ly = .04; Lz = .03; % Cavity dimensions in meters
Nx = 25; Ny = 20; Nz = 15; % Number of cells in each direction
Cx = Nx / Lx; % Inverse cell dimensions
Cy = Ny / Ly;
Cz = Nz / Lz;
Nt = 32; % Number of time steps
Dt = 1/(c0*norm([Cx Cy Cz])); % Time step
% Allocate field matrices
Ex = zeros(Nx , Ny+1, Nz+1);
Ey = zeros(Nx+1, Ny , Nz+1);
Ez = zeros(Nx+1, Ny+1, Nz );
Hx = zeros(Nx+1, Ny , Nz );
Hy = zeros(Nx , Ny+1, Nz );
Hz = zeros(Nx , Ny , Nz+1);
% Allocate time signals
Et = zeros(Nt,3);
% Initiate fields (near but not on the boundary)
Ex(1,2,2) = 1;
Ey(2,1,2) = 2;
Ez(2,2,1) = 3;
% Time stepping
for n = 1:Nt;
% Update H everywhere
for i = 1:Nx+1
for j = 1:Ny
for k = 1:Nz
Hx(i,j,k) = Hx(i,j,k) + (Dt/mu0)* ...
((Ey(i,j,k+1)-Ey(i,j,k))*Cz - (Ez(i,j+1,k)-Ez(i,j,k))*Cy);
end
end
end
Hy = Hy + (Dt/mu0)*((Ez(2:Nx+1,:,:)-Ez(1:Nx,:,:))*Cx ...
- (Ex(:,:,2:Nz+1)-Ex(:,:,1:Nz))*Cz);
Hz = Hz + (Dt/mu0)*((Ex(:,2:Ny+1,:)-Ex(:,1:Ny,:))*Cy ...
- (Ey(2:Nx+1,:,:)-Ey(1:Nx,:,:))*Cx);
% Update E everywhere except on boundary
for i = 1:Nx
for j = 2:Ny
for k = 2:Nz
Ex(i,j,k) = Ex(i,j,k) + (Dt /eps0) * ...
((Hz(i,j,k)-Hz(i,j-1,k))*Cy-(Hy(i,j,k)-Hy(i,j,k-1))*Cz);
end
end
end
Ey(2:Nx,:,2:Nz) = Ey(2:Nx,:,2:Nz) + (Dt /eps0) * ...
((Hx(2:Nx,:,2:Nz)-Hx(2:Nx,:,1:Nz-1))*Cz ...
- (Hz(2:Nx,:,2:Nz)-Hz(1:Nx-1,:,2:Nz))*Cx);
Ez(2:Nx,2:Ny,:) = Ez(2:Nx,2:Ny,:) + (Dt /eps0) * ...
((Hy(2:Nx,2:Ny,:)-Hy(1:Nx-1,2:Ny,:))*Cx ...
- (Hx(2:Nx,2:Ny,:)-Hx(2:Nx,1:Ny-1,:))*Cy);
% Sample the electric field at chosen points
Etss(n,:) = [Ex(4,4,4) Ey(4,4,4) Ez(4,4,4)];
end
Version with diff written out as plain Matlab.
% Physical constants
eps0 = 8.8541878e-12; % Permittivity of vacuum
mu0 = 4e-7 * pi; % Permeability of vacuum
c0 = 299792458; % Speed of light in vacuum
% Parameter initiation
Lx = .05; Ly = .04; Lz = .03; % Cavity dimensions in meters
Nx = 25; Ny = 20; Nz = 15; % Number of cells in each direction
Cx = Nx / Lx; % Inverse cell dimensions
Cy = Ny / Ly;
Cz = Nz / Lz;
Nt = 1024; % Number of time steps
Dt = 1/(c0*norm([Cx Cy Cz])); % Time step
% Allocate field matrices
Ex = zeros(Nx , Ny+1, Nz+1);
Ey = zeros(Nx+1, Ny , Nz+1);
Ez = zeros(Nx+1, Ny+1, Nz );
Hx = zeros(Nx+1, Ny , Nz );
Hy = zeros(Nx , Ny+1, Nz );
Hz = zeros(Nx , Ny , Nz+1);
% Allocate time signals
Et = zeros(Nt,3);
% Initiate fields (near but not on the boundary)
Ex(1,2,2) = 1;
Ey(2,1,2) = 2;
Ez(2,2,1) = 3;
% Time stepping
for n = 1:Nt;
% Update H everywhere
Hx = Hx + (Dt/mu0)*((Ey(:,:,2:Nz+1)-Ey(:,:,1:Nz))*Cz ...
- (Ez(:,2:Ny+1,:)-Ez(:,1:Ny,:))*Cy);
Hy = Hy + (Dt/mu0)*((Ez(2:Nx+1,:,:)-Ez(1:Nx,:,:))*Cx ...
- (Ex(:,:,2:Nz+1)-Ex(:,:,1:Nz))*Cz);
Hz = Hz + (Dt/mu0)*((Ex(:,2:Ny+1,:)-Ex(:,1:Ny,:))*Cy ...
- (Ey(2:Nx+1,:,:)-Ey(1:Nx,:,:))*Cx);
% Update E everywhere except on boundary
Ex(:,2:Ny,2:Nz) = Ex(:,2:Ny,2:Nz) + (Dt /eps0) * ...
((Hz(:,2:Ny,2:Nz)-Hz(:,1:Ny-1,2:Nz))*Cy ...
- (Hy(:,2:Ny,2:Nz)-Hy(:,2:Ny,1:Nz-1))*Cz);
Ey(2:Nx,:,2:Nz) = Ey(2:Nx,:,2:Nz) + (Dt /eps0) * ...
((Hx(2:Nx,:,2:Nz)-Hx(2:Nx,:,1:Nz-1))*Cz ...
- (Hz(2:Nx,:,2:Nz)-Hz(1:Nx-1,:,2:Nz))*Cx);
Ez(2:Nx,2:Ny,:) = Ez(2:Nx,2:Ny,:) + (Dt /eps0) * ...
((Hy(2:Nx,2:Ny,:)-Hy(1:Nx-1,2:Ny,:))*Cx ...
- (Hx(2:Nx,2:Ny,:)-Hx(2:Nx,1:Ny-1,:))*Cy);
% Sample the electric field at chosen points
Ets(n,:) = [Ex(4,4,4) Ey(4,4,4) Ez(4,4,4)];
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -